Advertisement

Ring blank design and its effect on combined radial and axial ring rolling

  • Xinghui Han
  • Lin HuaEmail author
  • Xiaokai Wang
  • Guanghua Zhou
  • Bohan Lu
ORIGINAL ARTICLE

Abstract

In conventional ring rolling, it is difficult to achieve a large increase in the ring height. This paper proposes a new combined radial and axial ring rolling process, which can achieve a large increase in both the ring diameter and height. During the proposed process, the geometry of the ring blank is of great importance because it determines the distribution of the radial ring rolling process and the subsequent axial ring rolling process. Therefore, this paper is aimed to reveal the effect of the geometry of the ring blank on the combined radial and axial ring rolling process. Using the finite element (FE) method, the deformation characteristics of the ring are first investigated. Then, the effect of the geometry of the ring blank, axial height H0, outer diameter D0, and thickness t0, on the geometry development and inhomogeneous deformation of the final rolled ring, is revealed. The results of this research provide an important basis for the design and optimization of the ring blank in the new combined radial and axial ring rolling process.

Keywords

Ring rolling Geometry Ring blank Design FE simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson W, Needham G (1968) Experiments on ring rolling. Int J Mech Sci 10:95–113CrossRefGoogle Scholar
  2. 2.
    Mamalis AG, Hawkyard JB, Johnson W (1975) Cavity formation in rolling profiled rings. Int J Mech Sci 17:669–672CrossRefGoogle Scholar
  3. 3.
    Mamalis AG, Hawkyard JB, Johnson W (1976) Spread and flow patterns in ring rolling. Int J Mech Sci 18:11–16CrossRefGoogle Scholar
  4. 4.
    Allwood JM, Kopp R, Michels D, Music O, Öztop M, Stanistree TF, Tekkaya AE, Tiedemman I (2005) The technical and commercial potential of an incremental ring rolling process. CIRP Ann-Manu Technol 54:233–236CrossRefGoogle Scholar
  5. 5.
    Yeom JT, Kim JH, Park NK, Choi SS, Lee CS (2007) Ring-rolling design for a large-scale ring product of Ti-6Al-4V alloy. J Mater Process Technol 187–188:747–751CrossRefGoogle Scholar
  6. 6.
    Ryttberg K, Knutson Wedel M, Recina V, Dahlman P, Nyborg L (2010) The effect of cold ring rolling on the evolution of microstructure and texture in 100Cr6 steel. Mater Sci Eng A 527:2431–2436CrossRefGoogle Scholar
  7. 7.
    Wu M, Hua L, Shao YC, Zhou QJ (2011) Influence of the annealing cooling rate on the microstructure evolution and deformation behaviours in the cold ring rolling of medium steel. Mater Des 32:2292–2300CrossRefGoogle Scholar
  8. 8.
    Hawkyard JB, Johnson W, Kirkland J, Appleton E (1973) Analyses for roll force and torque in ring rolling, with some supporting experiments. Int J Mech Sci 15:873–893CrossRefGoogle Scholar
  9. 9.
    Hahm YH, Yang DY (1991) UBET analysis of roll torque and profile formation during the profile ring rolling of rings having rectangular protrusions. J Mater Process Technol 26:267–280CrossRefGoogle Scholar
  10. 10.
    Hua L, Zhao ZZ (1997) The extremum parameters in ring rolling. J Mater Process Technol 69:273–276CrossRefGoogle Scholar
  11. 11.
    Yan FL, Hua L, Wu YQ (2007) Planning feed speed in cold ring rolling. Int J Mach Tool Manu 47:1695–1701CrossRefGoogle Scholar
  12. 12.
    Qian DS, Hua L, Pan LB (2009) Research on gripping conditions in profile ring rolling of raceway groove. J Mater Process Technol 209:2794–2802CrossRefGoogle Scholar
  13. 13.
    Yang H, Li LY, Wang M, Guo LG (2010) Research on the expanding deformation of ring radius in cold profiled ring rolling process. Sci China Technol Sci 53:813–821CrossRefGoogle Scholar
  14. 14.
    Yang DY, Kim KH, Hawkyard JB (1991) Simulation of T-section profile ring rolling by the 3-D rigid-plastic finite element method. Int J Mech Sci 33:541–550CrossRefGoogle Scholar
  15. 15.
    Song JL, Dowsona AL, Jacobsa MH, Brooks J, Beden I (2002) Coupled thermo-mechanical finite-element modeling of hot ring rolling process. J Mater Process Technol 121:332–340CrossRefGoogle Scholar
  16. 16.
    Davey K, Ward MJ (2003) An ALE approach for finite element ring-rolling simulation of profiled rings. J Mater Process Technol 139:559–566CrossRefGoogle Scholar
  17. 17.
    Guo LG, Yang H, Zhan M (2005) Research on plastic deformation behaviour in cold ring rolling by FEM numerical simulation. Model Simul Mater Sci Eng 13:1029–1046CrossRefGoogle Scholar
  18. 18.
    Hirt G, Kopp R, Hofmann O, Franzke M, Barton G (2007) Implementing a high accuracy multi-mesh method for incremental bulk metal forming. CIRP Ann-Manu Technol 56:313–316CrossRefGoogle Scholar
  19. 19.
    Moon HK, Lee MC, Joun MS (2008) Predicting polygonal-shaped defects during hot ring rolling using a rigid-viscoplastic finite element method. Int J Mech Sci 50:306–314CrossRefGoogle Scholar
  20. 20.
    Yang H, Wang M, Guo LG, Sun ZC (2008) 3D coupled thermo-mechanical FE modeling of blank size effects on the uniformity of strain and temperature distributions during hot rolling of titanium alloy large rings. Comp Mater Sci 44:611–621CrossRefGoogle Scholar
  21. 21.
    Anjami N, Basti A (2010) Investigation of rolls size effects on hot ring rolling process by coupled thermo-mechanical 3D-FEA. J Mater Process Technol 210:1364–1377CrossRefGoogle Scholar
  22. 22.
    Wang XK, Hua L (2012) Modeling of on-line measurement for rolling the rings with blank size errors in vertical hot ring rolling process. Int J Adv Manuf Technol 68:257–262CrossRefGoogle Scholar
  23. 23.
    Tian L, Luo Y, Mao HJ, Hua L (2013) A hybrid of theory and numerical simulation research for virtual rolling of double-groove ball rings. Int J Adv Manuf Technol 69:1–13CrossRefGoogle Scholar
  24. 24.
    Li LY, Li X, Liu J, He Z (2013) Modeling and simulation of cold rolling process for double groove ball-section ring. Int J Adv Manuf Technol 69:1717–1729CrossRefGoogle Scholar
  25. 25.
    Hua L, Han XH (2009) 3D FE modeling simulation of cold rotary forging of a cylinder workpiece. Mater Des 30:2133–2142CrossRefGoogle Scholar
  26. 26.
    Han XH, Hua L (2013) 3D FE modeling simulation for wear in cold rotary forging of 20CrMnTi alloy. J Tribol-T ASME 135:011101–1-15CrossRefGoogle Scholar
  27. 27.
    Han XH, Hua L (2011) Prediction of contact pressure, slip distance and wear in cold rotary forging using finite element methods. Tribol Int 44:1742–1753CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Xinghui Han
    • 1
  • Lin Hua
    • 1
    Email author
  • Xiaokai Wang
    • 1
  • Guanghua Zhou
    • 1
  • Bohan Lu
    • 1
  1. 1.School of Automotive Engineering, Hubei Key Laboratory of Advanced Technology of Automotive PartsWuhan University of TechnologyWuhanChina

Personalised recommendations