Advertisement

A proper framework for design of aircraft production system based on lean manufacturing principles focusing to automated processes

  • G. F. BarbosaEmail author
  • J. Carvalho
  • E. V. G. Filho
ORIGINAL ARTICLE

Abstract

This paper focuses on a proper framework that uses the requirements and concepts of lean manufacturing for a specific application to projects of aerospace manufacturing processes aiming production automation. The main goal of this guideline is to provide information, for engineers who work on the development processes, about the automation benefits that can be achieved when using this proposed guidance method of analysis presented herein. A case study is presented to validate this method’s effectiveness.

Keywords

Lean manufacturing Aircraft Design Automation Product development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Womack JP, Jones DT (1992) A máquina que mudou o mundo. 3ed. Campus, Rio de JaneiroGoogle Scholar
  2. 2.
    Womack JP, Jones DT (2004) A Mentalidade Enxuta nas Empresas (lean thinking): Elimine o Desperdício e Crie Riqueza. Campus, São PauloGoogle Scholar
  3. 3.
    Araujo CAC (2004) Desenvolvimento e Aplicação de um Método para Implementação de Sistemas de Produção Enxuta utilizado os Processos de Raciocínio da Teoria das Restrições e o Mapeamento do Fluxo de Valor. Dissertação de Mestrado. EESC/USP, São CarlosGoogle Scholar
  4. 4.
    Cachon G, Terwiesch C (2009) Matching supply and demand, Internationalth edn. McGraw-Hill, SingaporeGoogle Scholar
  5. 5.
    Ohno T (1988) Toyota production system. Productivity, CambridgeGoogle Scholar
  6. 6.
    Shingo S (1989) A study of the Toyota production system from an industrial engineering viewpoint. Productivity, PortlandGoogle Scholar
  7. 7.
    Spear SJ, Bowen HK (1999) Decoding the DNA of the Toyota production system. Harv Bus Rev 77(5):97–106Google Scholar
  8. 8.
    Shah R, Ward PT (2007) Defining and developing measures of lean production. J Oper Manag 25(4):785–805CrossRefGoogle Scholar
  9. 9.
    Pavnaskar SJ, Gershenson JK, Jambekar AB (2003) “Classification scheme for lean manufacturing tools”. Int J Prod Res 41(13):3075–3090CrossRefGoogle Scholar
  10. 10.
    Li S, Subba Rao S, Ragu-Nathan TS, Ragu-Nathan B (2005) Development and validation of a measurement instrument for studying supply chain management practices. J Oper Manag 23(6):618–641CrossRefGoogle Scholar
  11. 11.
    Seth D, Gupta V (2005) Application of value stream mapping for lean operations and cycle time reduction. Prod Plan Control 16(1):44–59CrossRefGoogle Scholar
  12. 12.
    Hines P, Rich N, Esain A (1999) Value stream mapping—a distribution industry application. Benchmark Int J 6(1):60–77CrossRefGoogle Scholar
  13. 13.
    Lasa IS, Laburu CO, Vila RC (2008) An evaluation of the value stream mapping tool. Bus Process Manag 14(1):39–52CrossRefGoogle Scholar
  14. 14.
    Basu R (2009) Implementing Six Sigma and lean: a practical guide to tools and techniques. Butterworth-Heinemann, OxfordCrossRefGoogle Scholar
  15. 15.
    Boeing (2002) Literature: tactics to improve operational efficiencyGoogle Scholar
  16. 16.
    Boeing (2013) 777 moving production line—benefits. http://www.boeing.com/boeing/commercial/777family/777movingline.page
  17. 17.
    Lean Man (2010) TIMWOOD 7 seven wastes. http://leanman.hubpages.com/hub/Seven-Wastes#
  18. 18.
    Lund E (2006) Boeing now building 777s on a moving line assembly. Magazine Assembly, DecemberGoogle Scholar
  19. 19.
    McManus H (2000) “Seeing and improving the product development value stream”. LAI Executive Board PresentationGoogle Scholar
  20. 20.
    Baxter D, Gao J, Case K et al (2008) A framework to integrate design knowledge reuse and requirements management in engineering design. Robot Comput Integr Manuf 24:585–593CrossRefGoogle Scholar
  21. 21.
    Meyer JD (1988) Applications of robots. International Encyclopedia of Robotics: Applications and Automation, New YorkGoogle Scholar
  22. 22.
    Zimmerman EH (2001) Getting factory automation right: the first time. SME, DearbornGoogle Scholar
  23. 23.
    Waurzyniak P (2006) Modular automation for the aerospace industry. Manufacturing Engineering magazine, p.81, MarchGoogle Scholar
  24. 24.
    Lopes KLGV (2007) Introdução a Automação Industrial. Branqs Automação, BrazilGoogle Scholar
  25. 25.
    Hopp WJ, Spearman ML (2001) “Factory physics”. McGraw Hill Companies Inc, USA, p 252Google Scholar
  26. 26.
    Keil S et al (2011) Establishing continuous flow manufacturing in a Wafertest-environment via value stream design. 22nd Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference, NYCrossRefGoogle Scholar
  27. 27.
    Gerhardt MP (2005) Sistemática para Aplicação de Procedimentos de Balanceamento em Linhas de Montagem Multi-Modelos. Dissertação de Mestrado pela Universidade Federal do Rio Grande do SulGoogle Scholar
  28. 28.
    Slack N et al (2007) Administração da Produção. Editora Atlas, São PauloGoogle Scholar
  29. 29.
    ST. Aubyn M et al. (2009) Study on the efficiency and effectiveness of public spending on tertiary education. Economic Papers 390Google Scholar
  30. 30.
    Zolfaghari S, Roa EVL (2006) Cellular manufacturing versus a hybrid system: a comparative study. J Manuf Technol Manag 17(7):942–961CrossRefGoogle Scholar
  31. 31.
    Tortorella GL, Fogliatto FS (2008) Planejamento Sistemático de Layout com Apoio de Análise de Decisão Multicritério. Produção, v.18, no3Google Scholar
  32. 32.
    Liberopoulos G, Kozanidis G, Tsarouhas P (2007) Performance evaluation of an automatic transfer line with WIP scrapping during long failures. Manuf Serv Oper Manag 9:62–83CrossRefGoogle Scholar
  33. 33.
    Aris RB (2006) Maintenance factors in building design. Tese (Mestrado). Faculdade de Engenharia Civil—Universidade de Tecnologia da Malásia. MaioGoogle Scholar
  34. 34.
    Melhado SB, Mesquita MJM (2005) Gestão do Ciclo de Vida do Empreendimento: Estratégias para eficiência e eficácia com base na interface Operação—Concepção. IV SIBRAGEC—Simpósio Brasileiro de Gestão e Economia da Construção, Porto AlegreGoogle Scholar
  35. 35.
    Tsarouhas P (2007) Implementation of total productive maintenance in food industry: a case study. J Qual Maint Eng 13(1):5–18CrossRefGoogle Scholar
  36. 36.
    Kunde WG (2009) Setup rápido: uma atividade que alia o conhecimento técnico e a criatividade. Gestão da Produção e Qualidade, NovembroGoogle Scholar
  37. 37.
    Streeck W (1988) The firm as a place of training and learning. The Transformation of Firm and Work. Il Mulino, BolognaGoogle Scholar
  38. 38.
    Fulkerson B (1997) A response to dynamic change in the market place. J Decis Support Syst 21:199–214CrossRefGoogle Scholar
  39. 39.
    Newcomb PJ, Bras B, Rosen DW (1996) Implications of modularity on product design for the life cycle. ASME design engineering technical conferences, DETC96/DTM-1516, Irvine, CAGoogle Scholar
  40. 40.
    Oborski P (2004) Man–machine interactions in advanced manufacturing systems. Int J Adv Manuf Technol 23(3–4):227–232CrossRefGoogle Scholar
  41. 41.
    Beauchamp Y, Stobbe TJ (1995) A review of experimental studies on human-robot system situations and their design implications. Int J Hum Factors Manuf 5(3):283–302CrossRefGoogle Scholar
  42. 42.
    Edwards WK, Poole ES, Stoll J (2007) Security automation considered harmful? School of Interactive Computing and GVU Center—Georgia Institute of Technology, Atlanta, pp 33–42Google Scholar
  43. 43.
    Tan JTC et al (2009) Safety design and development of human-robot collaboration in cellular manufacturing. 5th Annual IEEE Conference on Automation Science and Engineering Bangalore, IndiaGoogle Scholar
  44. 44.
    Navon R, Shpatnitsky Y (2005) Field experiments in automated monitoring of road construction. J Constr Eng Manage 131(4):487–493CrossRefGoogle Scholar
  45. 45.
    Potkonjak V et al (2000) Dynamics of anthropomorphic painting robot: quality analysis and cost reduction. Robot Auton Syst 32:17–38CrossRefGoogle Scholar
  46. 46.
    Skibniewski M, Hendrickson C (1988) Analysis of robotic surface finishing work on construction site. J Constr Eng Manage ASCE 114(1):53–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Engineering School of São CarlosUniversity of Sao Paulo (USP)Sao PauloBrazil

Personalised recommendations