An exact optimization approach for a transfer line reconfiguration problem

  • Fatme Makssoud
  • Olga BattaïaEmail author
  • Alexandre Dolgui


The paper deals with a transfer line reconfiguration problem. Such lines are made of machines (workstations) located in sequence and linked by a material handling device. Each machine can be equipped with several multi-spindle heads activated sequentially. Each spindle head executes a set of operations simultaneously. If new products have to be manufactured at the line or existing products are modified, then the line has to be reconfigured in order to meet new production requirements. The objective of such reconfiguration is to reduce the investment cost for new equipment by reusing optimally the existing facilities. A new mathematical model is suggested for this optimization problem. A case study is presented to demonstrate the use of the developed optimization model. The results of numerical experiments for 41 industrial test problems are also analyzed which show that up to 51 % investment savings can be obtained with this model.


Manufacturing system Reconfiguration Reusability Line balancing Equipment selection Mixed integer program 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altemeier S, Helmdach M, Koberstein A, Dangelmaier W (2010) Reconfiguration of assembly lines under the influence of high product variety in the automotive industry—a decision support system. Int J Prod Res 48(21):6235–6256Google Scholar
  2. 2.
    Battaïa O, Dolgui A (2013) A taxonomy of line balancing problems and their solution approaches. Int J Prod Econ 142:259–277Google Scholar
  3. 3.
    Battaïa O, Dolgui A (2012) Reduction approaches for a generalized line balancing problem. Comput Oper Res 39:2337–2345CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Battaïa O, Gurevsky E, Makssoud F, Dolgui A (2013) Equipment location in machining transfer lines with multi-spindle heads. J Math Model Algorithm Oper Res 12(2):117–133CrossRefzbMATHGoogle Scholar
  5. 5.
    Battaïa O, Dolgui A, Guschinsky N, Levin G (2012) A decision support system for design of mass production machining lines composed of stations with rotary or mobile table. Robot Comput Integr Manuf 28:672–680CrossRefGoogle Scholar
  6. 6.
    Bock S, Rosenberg O, van Brackel T (2006) Controlling mixed-model assembly lines in real-time by using distributed systems. Eur J Oper Res 168:880–904CrossRefzbMATHGoogle Scholar
  7. 7.
    Bi ZM, Lang SYT, Shen W, Wang L (2008) Reconfigurable manufacturing systems: the state of the art. Int J Prod Res 46(4):967–992CrossRefzbMATHGoogle Scholar
  8. 8.
    Colledani M, Tolio T (2005) A decomposition method to support the configuration/reconfiguration of production systems. CIRP Ann: Manuf Technol 54(1):441–444Google Scholar
  9. 9.
    Corominas A, Pastor R, Plans J (2008) Balancing assembly line with skilled and unskilled workers. Omega 36:1126–1132CrossRefGoogle Scholar
  10. 10.
    Dashchenko AI (Ed) (2003) Manufacturing technologies for machines of the future 21st Century Technologies. SpringerGoogle Scholar
  11. 11.
    Dhouib K, Gharbi A, Landolsi N (2010) Availability modelling and analysis of multi-product flexible transfer lines subject to random failures. Int J Adv Manuf Technol 50(1–4):329–341CrossRefGoogle Scholar
  12. 12.
    Dolgui A, Finel B, Guschinskaya O, Guschinsky N, Levin G, Vernadat F (2006a) Balancing large-scale machining lines with multi-spindle heads using decomposition. Int J Prod Res 44(18–19):4105–4120CrossRefzbMATHGoogle Scholar
  13. 13.
    Dolgui A, Finel B, Guschinsky N, Levin G, Vernadat F (2006b) MIP approach to balancing transfer lines with blocks of parallel operations. IIE Trans 38(10):869–882CrossRefGoogle Scholar
  14. 14.
    Dou J, Dai X, Meng Z (2009) Graph theory-based approach to optimize single-product flow-line configurations of RMS. Int J Adv Manuf Technol 41(9–10):916–931CrossRefGoogle Scholar
  15. 15.
    Gamberini R, Grassi A, Rimini B (2006) A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. Int J Prod Econ 102:226–243CrossRefGoogle Scholar
  16. 16.
    Gamberini R, Gebennini A, Grassi A, Regattieri A (2009) A multiple single-pass heuristic algorithm solving the stochastic assembly line rebalancing problem. Int J Prod Res 47(8):2141–2164CrossRefzbMATHGoogle Scholar
  17. 17.
    Grangeon N, Leclaire P, Norre S (2011) Heuristics for the re-balancing of a vehicle assembly line. Int J Prod Res 49(22):6609–6628Google Scholar
  18. 18.
    Guschinskaya O (2010) Vers une optimisation de la configuration de systèmes d'usinage à boîtiers multibroches. J Européen des Systèmes Automatisés 44(7):771–790CrossRefGoogle Scholar
  19. 19.
    Guschinskaya O, Dolgui A (2009) Comparison of exact and heuristic methods for a transfer line balancing problem. Int J Prod Econ 120(2):276–286CrossRefMathSciNetGoogle Scholar
  20. 20.
    Guschinskaya O, Dolgui A, Guschinsky N, Levin G (2008) A heuristic multi-start decomposition approach for optimal design of serial machining lines. Eur J Oper Res 189(3):902–913CrossRefzbMATHGoogle Scholar
  21. 21.
    Guschinskaya O, Gurevsky E, Dolgui A, Eremeev A (2011) Metaheuristic approaches for the design of machining lines. Int J Adv Manuf Technol 55(1):11–22CrossRefGoogle Scholar
  22. 22.
    Ko JHJ, Huang T (2005) Reusability assessment for manufacturing systems. CIRP Ann Manuf Technol 54(1):113–116CrossRefGoogle Scholar
  23. 23.
    Koren Y, Jovane F, Moriwaki T, Pritschow G, Van Ulsoy G, Brussel H (1999) Reconfigurable manufacturing systems. Annals CIRP 48(2):527–540CrossRefGoogle Scholar
  24. 24.
    Koren Y, Shpitalni M (2010) Design of reconfigurable manufacturing systems. J Manuf Syst 29(4):130–141CrossRefGoogle Scholar
  25. 25.
    Li J, Dai X, Meng Z (2008) Improved net rewriting system-based approach to model reconfiguration of reconfigurable manufacturing systems. Int J Adv Manuf Technol 37(11–12):1168–1189CrossRefGoogle Scholar
  26. 26.
    Maler-Speredelozzi V, Koren YHSJ (2003) Convertibility measures for manufacturing systems. CIRP Ann Manuf Technol 52(1):367–370CrossRefGoogle Scholar
  27. 27.
    Makssoud F, Battaïa O, Dolgui A (2013) An exact method for the assembly line re-balancing problem. Advances in Production Management Systems. Sustainable Production and Service Supply Chains. Prabhu V, Taish M, and Kiritsis D (eds). Springer Series: IFIP Advances in Information and Communication Technology. vol. 414, 159–166. SpringerGoogle Scholar
  28. 28.
    Masood S (2006) Line balancing and simulation of an automated production transfer line. Assem Autom 26:169–174CrossRefGoogle Scholar
  29. 29.
    Mehrabi MG, Ulsoy AG, Koren Y (2000) Reconfigurable manufacturing systems and their enabling technologies. Int J Manuf Technol Manag 1(1):113–130Google Scholar
  30. 30.
    Mehrabi MG, Ulsoy AG, Koren Y (2000) Reconfigurable manufacturing systems: key to future manufacturing. J Intell Manuf 11(4):403–419CrossRefGoogle Scholar
  31. 31.
    Mehrabi MG, Ulsoy AG, Koren Y, Heytler P (2002) Trends and perspectives in flexible and reconfigurable manufacturing systems. J Intell Manuf 13:135–146CrossRefGoogle Scholar
  32. 32.
    Mpofu K, Tlale NS (2012) Multi-level decision making in reconfigurable machining systems using fuzzy logic. J Manuf Syst 31:103–112CrossRefGoogle Scholar
  33. 33.
    Padayachee J, Bright G (2012) Modular machine tools: design barriers to industrial implementation. J Manuf Syst 31:92–102CrossRefGoogle Scholar
  34. 34.
    Oliveira FS, Vittori K, RusseletX RMO, Travassos L (2012) Mixed assembly line rebalancing: a binary integer approach applied to real world problems in the automotive industry. Int J Automot Technol 13(6):933–940CrossRefGoogle Scholar
  35. 35.
    Osman H, Baki MF (2013) Balancing transfer lines using Benders decomposition and ant colony optimisation techniques. Int J Prod Res. doi: 10.1080/00207543.2013.842017 Google Scholar
  36. 36.
    Terkaj W, Tolio T, Valente A (2010) A stochastic programming approach to support the machine tool builder in designing focused flexibility manufacturing systems (FFMSs). Int J Manuf Res 5:199–229Google Scholar
  37. 37.
    Tolio T, Urgo M (2007) A rolling horizon approach to plan outsourcing in manufacturing-to-order environments affected by uncertainty. CIRP Annals -Manuf Technol 56(1):487–490CrossRefGoogle Scholar
  38. 38.
    Tolio T, Urgo M (2013) Design of flexible transfer lines: a case-based reconfiguration cost assessment. J Manuf Syst 32(2):325–334CrossRefGoogle Scholar
  39. 39.
    Tolio T, Ceglarek D, ElMaraghy HA, Fischer A, Hu SJ, Laperrière L, Newman ST, Váncza J (2010) SPECIES—co-evolution of products. Processes and production systems. CIRP Ann Manuf Technol 59(2):672–693CrossRefGoogle Scholar
  40. 40.
    Usubamatov R, Ahmed Alwaise AM, Zain ZM (2013) Productivity and optimization of section-based automated lines of parallel–serial structure with embedded buffers. Int J Adv Manuf Technol 65(5–8):651–655CrossRefGoogle Scholar
  41. 41.
    Usubamatov R, Ismail KA, Sah JM (2013) Mathematical models for productivity and availability of automated lines. Int J Adv Manuf Technol 66(1–4):59–69CrossRefGoogle Scholar
  42. 42.
    Wang W, Koren Y (2012) Scalability planning for reconfigurable manufacturing systems. J Manuf Syst 31(2):83–91CrossRefGoogle Scholar
  43. 43.
    Wiendahl H-P, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl H–H, Duffie N, Brieke M (2007) Changeable manufacturing—classification, design and operation. CIRP Ann Manuf Technol 56(2):783–809CrossRefGoogle Scholar
  44. 44.
    Yang C, Gao J, Sun L (2013) A multi-objective genetic algorithm for mixed-model assembly rebalancing. Comput Ind Eng 65(1):109–116CrossRefGoogle Scholar
  45. 45.
    Youssef A, ElMaraghy HA (2007) Optimal configuration selection for reconfigurable manufacturing systems. Int J Flex Manuf Syst 19(2):67–106CrossRefzbMATHGoogle Scholar
  46. 46.
    Youssef A, ElMaraghy HA (2008) Availability consideration in the optimal selection of multiple-aspect RMS configurations. Int J Prod Res 46(21):5849–5882CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Fatme Makssoud
    • 1
  • Olga Battaïa
    • 1
    Email author
  • Alexandre Dolgui
    • 1
  1. 1.Ecole des Mines de Saint-Etienne, CNRS UMR6158, LIMOSSaint-EtienneFrance

Personalised recommendations