Thermal analysis of the hydrostatic spindle system by the finite volume element method

  • Hao Su
  • Lihua Lu
  • Yingchun Liang
  • Qiang Zhang
  • Yazhou Sun
ORIGINAL ARTICLE

Abstract

The temperature rise of an ultra-precision machine tool has a great impact on machining accuracy. Meanwhile, the hydrostatic spindle system is the main internal heat source of the machine tool, which consists of a hydrostatic spindle and a direct current motor. Therefore, it is very significant to study the thermal behaviors of the hydrostatic spindle system. In this paper, an integrated heat-fluid–solid coupling model of the hydrostatic spindle system is built to simulate the heat generation process and the fluid–structure conjugate heat transfer. Then a finite volume element method (FVEM) is proposed by combining the advantages of the finite volume method (FVM) and the finite element method (FEM) with consideration of the interaction of the temperature field, thermal deformation, and eccentricity. Based on the proposed model and method, the thermal characteristics of the hydrostatic spindle system are studied by the two-way heat-fluid–solid coupling analysis. The temperature variations obtained by the simulation agree well with the experimental results, which validate the proposed model and method.

Keywords

Hydrostatic spindle system Heat-fluid–solid coupling model Finite volume element method Thermal behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryan J (1990) International status of thermal error research. CIRP Ann 39(2):645–656CrossRefMathSciNetGoogle Scholar
  2. 2.
    Weck M, Mckeown P, Bonse R, Herbst U (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann 44(2):89–598CrossRefGoogle Scholar
  3. 3.
    Liang RJ, Ye WH, Zhang HH, Yang QF (2013) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63:1167–1176Google Scholar
  4. 4.
    Hsieh KH, Chen TR, Chang P, Tang CH (2013) Thermal growth measurement and compensation for integrated spindles. Int J Adv Manuf Technol 64:889–901CrossRefGoogle Scholar
  5. 5.
    Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50(4):386–393CrossRefGoogle Scholar
  6. 6.
    Kim JJ, Jeong YH, Cho DW (2004) Thermal behavior of a machine tool equipped with linear motors. Int J Mach Tools Manuf 44(7–8):749–758CrossRefGoogle Scholar
  7. 7.
    Chen DJ, Bonis M, Zhang FH, Dong S (2011) Thermal error of a hydrostatic spindle. Precis Eng 35(3):512–520CrossRefGoogle Scholar
  8. 8.
    Zhao HT, Yang JG, Shen JH (2007) Simulation of thermal behavior of a CNC machine tool spindle. Int J Mach Tools Manuf 47:1003–1010CrossRefGoogle Scholar
  9. 9.
    Zhang JF, Feng PF, Chen C, Yu DW, Wu ZJ (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68:1517–1527CrossRefGoogle Scholar
  10. 10.
    Mayr J, Weikert S, Wegener K (2007) Comparing the thermo-mechanical behavior of machine tool frame designs using a FDM-FEM simulation approach. Proceedings ASPE annual meeting:17–20Google Scholar
  11. 11.
    Mayr J, Ess M, Weikert S, Wegener K (2009) Compensation of thermal effects on machine tools using a FDEM simulation approach. Proceedings Lamdamap, vol.9. ISBN 1861941188Google Scholar
  12. 12.
    Jedrzejewski J, Kowai Z, Kwasny W, Modrzycki W (2004) Hybrid model of high speed machining centre headstock. CIRP Ann 53(1):285–288CrossRefGoogle Scholar
  13. 13.
    Holkup T, Cao H, Kolář P, Altintas Y, Zelený Y (2010) Thermo-mechanical model of spindles. CIRP Ann 59(1):365–368CrossRefGoogle Scholar
  14. 14.
    Li DX, Feng PF, Zhang JF, Wu ZJ, Yu DW (2014) Calculation method of convective heat transfer coefficients for thermal simulation of a spindle system based on RBF neural network. Int J Adv Manuf Technol. doi: 10.1007/s00170-013-5386-y Google Scholar
  15. 15.
    Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Hartig F, Wendt K, Morwaki T, Shore P, Schmitt R, Brecher C, Wurz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann 61:771–791CrossRefGoogle Scholar
  16. 16.
    Anderson JD (1995) Computational fluid dynamics: the basics with applications. McGraw Hill, New YorkGoogle Scholar
  17. 17.
    Larson MG, Bengzon F (2013) The finite element method: theory, implementation and applications. Springer, HeidelbergCrossRefGoogle Scholar
  18. 18.
    Zhang HL (2010) Iron Losses and transient temperature field of permanent magnetic synchronous motor, Dissertation, Harbin institute of technologyGoogle Scholar
  19. 19.
    Wu TH, Wang XM, G.L. Xu GL (2011) Engineering thermodynamics. Huazhong University of Science and Technology Press, WuhanGoogle Scholar
  20. 20.
    Cardone G, Astarita T, Carlomagno GM (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3:1–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Hao Su
    • 1
  • Lihua Lu
    • 1
  • Yingchun Liang
    • 1
  • Qiang Zhang
    • 1
  • Yazhou Sun
    • 1
  1. 1.Center for Precision EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations