Multi-objective optimization of oblique turning operations using finite element model and genetic algorithm

  • Usama Umer
  • Jaber Abu Qudeiri
  • Hussein Abdalmoneam Mohammed Hussein
  • Awais Ahmed Khan
  • Abdul Rahman Al-ahmari
ORIGINAL ARTICLE

Abstract

Multi-objective optimization of oblique turning operations while machining AISI H13 tool steel has been carried out using developed finite element (FE) model and multi-objective genetic algorithm (MOGA-II). The turning operation is optimized in terms of cutting force and temperature with constraints on required material removal rate and cutting power. The developed FE model is capable to simulate cutting forces, temperature and stress distributions, and chip morphology. The tool is modeled as a rigid body, whereas the workpiece is considered as elastic–thermoplastic with strain rate sensitivity and thermal softening effect. The effects of cutting speed, feed rate, rake angle, and inclination angle are modeled and compared with experimental findings. FE model is run with different parameters with central composite design used to develop a response surface model (RSM). The developed RSM is used as a solver for the MOGA-II. The optimal processing parameters are validated using FE model and experiments.

Keywords

Oblique turning Finite element model Multi-objective optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moufki A, Devillez A, Dudzinski D, Molinari A (2004) Thermomechanical modelling of oblique cutting and experimental validation. Int J Mach Tools Manuf 44:971CrossRefGoogle Scholar
  2. 2.
    Fang G, Zeng P (2005) Three-dimensional thermo–elastic–plastic coupled FEM simulations for metal oblique cutting processes. J Mater Process Technol 168:42CrossRefGoogle Scholar
  3. 3.
    Zou GP, Yellowley I, Seethaler RJ (2009) A new approach to the modeling of oblique cutting processes. Int J Mach Tools Manuf 49:701CrossRefGoogle Scholar
  4. 4.
    Adibi-Sedeh AH, Madhavan V, Bahr B (2003) Upper bound analysis of oblique cutting: improved method of calculating the friction area. Int J Mach Tools Manuf 43:485CrossRefGoogle Scholar
  5. 5.
    Lazoglu I, Islam C (2012) Modeling of 3D temperature fields for oblique machining. CIRP Ann Manuf Technol 61:127CrossRefGoogle Scholar
  6. 6.
    Li R, Shih AJ (2006) Finite element modeling of 3D turning of titanium. Int J Adv Manuf Technol 29:253CrossRefGoogle Scholar
  7. 7.
    Llanos I, Villar JA, Urresti I, Arrazola PJ (2009) Finite element modeling of oblique machining using an arbitrary Lagrangian–Eulerian formulation. Mach Sci Technol 13:385CrossRefGoogle Scholar
  8. 8.
    Ng E-G, Aspinwall DK (2002) Modelling of hard part machining. J Mater Process Technol 127:222CrossRefGoogle Scholar
  9. 9.
    Pantalé O, Bacaria JL, Dalverny O, Rakotomalala R, Caperaa S (2004) 2D and 3D numerical models of metal cutting with damage effects. Comput Methods Appl Mech Eng 193:4383CrossRefMATHGoogle Scholar
  10. 10.
    Esteco Mode Frontier Documentation Version 4.3, 2007Google Scholar
  11. 11.
    Shaw MC (2013) Metal cutting principles 2E C. Oxford Science, OxfordGoogle Scholar
  12. 12.
    Ng EG, Aspinwall DK, Brazil D, Monaghan J (1999) Modelling of temperature and forces when orthogonally machining hardened steel. Int J Mach Tools Manuf 39:885CrossRefGoogle Scholar
  13. 13.
    Özel T (2003) Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools. J Mater Process Technol 141:284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Usama Umer
    • 1
  • Jaber Abu Qudeiri
    • 1
  • Hussein Abdalmoneam Mohammed Hussein
    • 1
  • Awais Ahmed Khan
    • 1
  • Abdul Rahman Al-ahmari
    • 1
  1. 1.Advanced Manufacturing Institute, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations