Advertisement

Diametrical growth in the forward flow forming process: simulation, validation, and prediction

  • X. Song
  • K. S. Fong
  • S. R. Oon
  • W. R. Tiong
  • P. F. Li
  • Alexander M. Korsunsky
  • A. Danno
ORIGINAL ARTICLE

Abstract

In the present study, the phenomenon of diametric growth in the forward flow forming process has been studied through finite element simulation and experimental investigation. Implicit integration scheme was employed in the simulation to achieve good accuracy for diametric growth prediction. The simulation results were in good agreement with the experiments for both types of materials considered, the aluminum alloy AA6061 and stainless steel SS304L. The residual stresses in the flow-formed parts were measured using x-ray diffraction to validate the model as well as provide the explanation for the diametric growth behavior. Based on the numerical and experimental results, an empirical function was proposed here to describe the amount of diametric growth in the flow-formed parts, which can be used as a predictive tool for dimension control in the flow forming process.

Keywords

Flow forming Finite element (FE) simulation Residual stresses Function for diametric growth prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xia QX, Cheng XQ, Hu Y, Ruan F (2006) Finite element simulation and experimental investigation on the forming forces of 3D non-axisymmetrical tubes spinning. Int J Mech Sci 48:726–735CrossRefGoogle Scholar
  2. 2.
    Xia QX, Cheng XQ, Long H, Ruan F (2012) Finite element analysis and experimental investigation on deformation mechanism of non-axisymmetric tube spinning. Int J Adv Manuf Technol 59:263–272CrossRefGoogle Scholar
  3. 3.
    Chang SC, Huang CA (1998) Tube spinnability of AA 2024 and 7075 aluminum alloys. J Mater Process Technol 80–81:676–682CrossRefGoogle Scholar
  4. 4.
    Hayama M (1966) Theoretical study of tube spinning. Bull Fac Eng 15:33–48Google Scholar
  5. 5.
    Gur M, Tirosh J (1982) Plastic flow instability under compressive loading during shear spinning process. J Manuf Sci Eng ASME 104(1):17–22Google Scholar
  6. 6.
    Danno A, Fong KS, Wong CC (2011) Effects of forming conditions on diameter accuracies of short cylindrical hollow cup after forward flow forming, In: Hirt G., Tekkaya, A.E. (Eds.), Proceedings of the 10th International Conference on Technology of Plasticity, ICTP 2011, Aachen, Germany, 574–579Google Scholar
  7. 7.
    Davidson JM, Balasubramanian K, Tagore GRN (2008) An experimental study on the quality of flow-formed AA6061 tubes. J Mater Process Technol 203:321–325CrossRefGoogle Scholar
  8. 8.
    Zhan M, Yang H, Zhang JH, Xu YL, Ma F (2007) 3D FEM analysis of influence of roller feed rate on forming force and quality of cone spinning. J Mater Process Technol 187:486–491CrossRefGoogle Scholar
  9. 9.
    Molladavoudi HR, Djavanroodi F (2011) Experimental study of thickness reduction effects on mechanical properties and spinning accuracy of aluminum 7075-O during flow forming. Int J Adv Manuf Technol 52:949–957CrossRefGoogle Scholar
  10. 10.
    Music O, Allwood JM, Kawai K (2010) A review of the mechanics of metal spinning. J Mater Process Technol 210:3–23CrossRefGoogle Scholar
  11. 11.
    Wang QH, Wang L, Jiang ZW, Gong SH (2013) Algorithm for the generation of mandrel protection curve and trajectory scheme for spinning machine. Int J Adv Manuf Technol 68:217–226CrossRefGoogle Scholar
  12. 12.
    Wang L, Long H (2013) Roller path design by tool compensation in multi-pass conventional spinning. Mater Des 46:645–653CrossRefGoogle Scholar
  13. 13.
    Dierig H (1992) CNC spinning using adaptive control. In: VDI Fortschrittsberichte, R. 2 no. 252. VDI-Verlag, DüsseldorfGoogle Scholar
  14. 14.
    Xue KM, Wang Z, Lu Y, Li KZ (1997) Elasto-plastic FEM analysis and experimental study of diametral growth in tube spinning. J Mater Process Technol 69(1–3):172–175Google Scholar
  15. 15.
    Xu Y, Zhang SH, Li P, Yang K, Shan DB, Lu Y (2001) 3D rigid-plastic FEM numerical simulation on tube spinning. J Mater Process Technol 113(1–3):710–713CrossRefGoogle Scholar
  16. 16.
    Wong CC, Dean TA, Lin J (2004) Incremental forming of solid cylindrical components using flow forming principles. J Mater Process Technol 153–154:60–66CrossRefGoogle Scholar
  17. 17.
    Parsa MH, Pazooki AMA, Ahmadabadi MN (2009) Flow-forming and flow formability simulation. Int J Adv Manuf Technol 42:463–473CrossRefGoogle Scholar
  18. 18.
    Hua FA, Yang YS, Zhang YN, Guo MH, Guo DY, Tong WH, Hu ZQ (2005) Three-dimensional finite element analysis of tube spinning. J Mater Process Technol 168(1):68–74CrossRefGoogle Scholar
  19. 19.
    Mohebbi MS, Akbarzadeh A (2010) Experimental study and FEM analysis of redundant strains in flow forming of tubes. J Mater Process Technol 210:389–395CrossRefGoogle Scholar
  20. 20.
    Song X, Xie M, Hofmann F, Jun TS, Connolley T, Reinhard C, Atwood RC, Connor L, Drakopoulos M, Harding S, Korsunsky AM (2013) Residual stresses in linear friction welding of aluminium alloys. Mater Des 50:360–369CrossRefGoogle Scholar
  21. 21.
    Noyan C, Huang TC, York BR (1995) Residual stress/strain analysis in thin films by x-ray diffraction. Cr Rev Sol State 20:125–177CrossRefGoogle Scholar
  22. 22.
    Bay N, Wanheim T (1976) Real area of contact and friction stress at high pressure sliding contact. Wear 38:201–209CrossRefGoogle Scholar
  23. 23.
    Wong CC, Danno A, Fong KS (2010) Study on the deformation behaviour in the flow forming of cylindrical cups using finite element method. Steel Res Int 81–9:1002–1006Google Scholar
  24. 24.
    Song X (2010) Modelling residual stresses and deformation in metal at different scales., DPhil thesis, University of OxfordGoogle Scholar
  25. 25.
    DEFORM-3D Version 10.0 User's Manual, 2.4.4 Object type, Scientific Forming Technologies Corporation (SFTC), 2010Google Scholar
  26. 26.
    Wong CC, Danno A, Huang C, Aue-u-lan Y, Fong KS, Lun CL, Chin N, SIMTech Internal Report (2011) Development of rotary forming technology (phase 2): flow forming of high strength/high performance materials and larger size axisymmetrical components, C08-F-015Google Scholar
  27. 27.
    Xu WC, Shan DB, Wang ZL, Yang GP, Lu Y, Kang DC (2007) Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy. Trans Nonferrous Metals Soc China 17:1205–1211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • X. Song
    • 1
  • K. S. Fong
    • 1
  • S. R. Oon
    • 2
  • W. R. Tiong
    • 2
  • P. F. Li
    • 2
  • Alexander M. Korsunsky
    • 3
  • A. Danno
    • 1
  1. 1.Singapore Institute of Manufacturing TechnologyA*STARSingaporeSingapore
  2. 2.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations