Advertisement

Using a double ball bar to identify position-independent geometric errors on the rotary axes of five-axis machine tools

  • Sitong XiangEmail author
  • Jianguo Yang
  • Yi Zhang
ORIGINAL ARTICLE

Abstract

A measuring method using a double ball bar (DBB) is proposed for identifying the eight position-independent geometric errors (PIGE) on the rotary axes of five-axis machine tools. Three measuring patterns are used, in which the translational axes are kept stationary and only two rotary axes move to obtain a circular trajectory. In this way, the effects of translational axes are totally excluded, and the measurement accuracy is improved. Motion equations, describing how the A-axis and C-axis move simultaneously to realize a circular trajectory, are presented. The influence of each deviation on the measurement patterns is simulated, and analytical solutions for the eight PIGEs are demonstrated. Finally, the measuring method is verified in a five-axis CNC machine tool. Experimental results confirm that the method provides precision results for the eight PIGEs.

Keywords

Five-axis CNC machine tool Rotary axes Double ball bar Position-independent geometric error Error measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsutsumi M, Saito A (2003) Identification and compensation of systematic deviations particular to 5-axis machining centers. Int J Mach Tool Manuf 43(8):771–780CrossRefGoogle Scholar
  2. 2.
    Dimla E, Dimla S (2000) Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods. Int J Mach Tool Manuf 40:1073–1098CrossRefGoogle Scholar
  3. 3.
    Stavropoulos P, Stournaras A, Chryssolouris G (2009) On the design of a monitoring system for desktop micro-milling machines. Int J Nanomanuf 3(1/2):29–39CrossRefGoogle Scholar
  4. 4.
    Abbaszadeh-Mir Y, Mayer JRR, Cloutier G, Fortin C (2002) Theory and simulation for the identification of the link geometric errors for a five-axis machine tool using a telescoping magnetic ball-bar. Int J Prod Res 40(18):4781–4797CrossRefzbMATHGoogle Scholar
  5. 5.
    Lee KI, Yang SH (2013) Robust measurement method and uncertainty analysis for position-independent geometric errors of a rotary axis using a double ball-bar. Int J Precis Eng Manuf 14(2):231–239CrossRefGoogle Scholar
  6. 6.
    ISO 230–7 (2006) Test code for machine tool-part 7: geometric accuracy of axes of rotation, ISOGoogle Scholar
  7. 7.
    Zargarbashi SHH, Mayer JRR (2009) Single setup estimation of a five-axis machine tool eight link errors by programmed end point constraint and on the fly measurement with capball sensor. Int J Mach Tool Manuf 49(10):759–766CrossRefGoogle Scholar
  8. 8.
    Wang M, Hu J, Zan T (2010) Kinematic error separation on five-axis NC machine tool based on telescoping double ball bar. Front Mech Eng China 5(4):431–437CrossRefGoogle Scholar
  9. 9.
    Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng 33(2):194–201CrossRefGoogle Scholar
  10. 10.
    Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675CrossRefGoogle Scholar
  11. 11.
    Ibaraki S, Knapp W (2011) Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: a review. Int J Autom Technol 6(2):110–124Google Scholar
  12. 12.
    Hong CF, Ibaraki S (2013) Non-contact R-test with laser displacement sensors for error calibration of five-axis machine tools. Precis Eng 37(1):159–171CrossRefGoogle Scholar
  13. 13.
    Ibaraki S, Oyama C, Otsubo H (2011) Construction of an error map of rotary axes on a five-axis machining center by static R-test. Int J Mach Tool Manuf 51(3):190–200CrossRefGoogle Scholar
  14. 14.
    Hong CF, Ibaraki S, Oyama C (2012) Graphical presentation of error motions of rotary axes on a five-axis machine tool by static R-test with separating the influence of squareness errors of linear axes. Int J Mach Tool Manuf 59:24–33CrossRefGoogle Scholar
  15. 15.
    Hong CF, Ibaraki S, Matsubara A (2011) Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five-axis machine tools. Precis Eng 35(1):1–11CrossRefGoogle Scholar
  16. 16.
    Ibaraki S, Sawada M, Matsubara A, Matsushita T (2010) Machining tests to identify kinematic errors on five-axis machine tools. Precis Eng 34(3):387–398CrossRefGoogle Scholar
  17. 17.
    Ibaraki S, Iritani T, Matsushita T (2012) Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe. Int J Mach Tool Manuf 58:44–53CrossRefGoogle Scholar
  18. 18.
    Lee KI, Lee DM, Yang SH (2012) Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar. Int J Adv Manuf Technol 62(5–8):741–750CrossRefGoogle Scholar
  19. 19.
    Zargarbashi SHH, Mayer JRR (2006) Assessment of machine tool trunnion axis motion error, using magnetic double ball bar. Int J Mach Tool Manuf 46(14):1823–1834CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Yang J, Zhang K (2012) Geometric error measurement and compensation for the rotary table of five-axis machine tool with double ballbar. Int J Adv Manuf Technol 65(1–4):275–281Google Scholar
  21. 21.
    Khan AW, Chen W (2010) A methodology for error characterization and quantification in rotary joints of multi-axis machine tools. Int J Adv Manuf Technol 51(9–12):1009–1022CrossRefGoogle Scholar
  22. 22.
    Lei WT, Sung MP, Liu WL, Chuang YC (2007) Double ballbar test for the rotary axes of five-axis CNC machine tools. Int J Mach Tool Manuf 47(2):273–285CrossRefGoogle Scholar
  23. 23.
    Inasaki I, Kishinami K, Sakamoto S (1997) Shaper generation theory of machine tools—its basis and applications. Yokendo, TokyoGoogle Scholar
  24. 24.
    Khan AW, Chen W (2010) A methodology for systematic geometric error compensation in five-axis machine tools. Int J Adv Manuf Technol 53(5–8):615–628Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations