A novel technique to produce metallic microdrops for additive manufacturing

  • E. J. Vega
  • M. G. Cabezas
  • B. N. Muñoz-Sánchez
  • J. M. Montanero
  • A. M. Gañán-Calvo
ORIGINAL ARTICLE

Abstract

In additive manufacturing (AM), three-dimen sional objects are built layer by layer by joining each layer to the previous one. Those layers can be formed from the direct deposition of metallic drops resulting from the breakage of a micrometer jet. The jet is produced by ejecting through a nozzle/orifice a metal melted in a crucible. In this paper, we propose a novel technique to produce a continuous droplet stream of a low-melting-point alloy for additive manufacturing. Our technique does not make use of a crucible. Instead, the tip of a metal wire is melted by an induction heating system as it is introduced in the nozzle. If the values of the control parameters are chosen appropriately, a quasi-steady jetting regime is established. This method is much more energetically efficient than its counterparts because it consumes just the energy necessary to melt the demanded material at any times.

Keywords

Additive manufacturing Metal wire Drop production Jetting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiyiti W, Zhao W, Lu B, Tang Y (2006) Investigation of the overlapping parameters of MPAW-based rapid prototyping. Rapid Prototyp J 12:165–172CrossRefGoogle Scholar
  2. 2.
    Cao W, Miyamoto Y (2006) Freeform fabrication of aluminum parts by direct deposition of molten aluminum. J Mater Process Technol 173:209–212CrossRefGoogle Scholar
  3. 3.
    Chao YP, Qi LH, Xiao Y, Luo J, Zhou JM (2012) Manufacturing of micro thin-walled metal parts by micro-droplet deposition. J Mater Process Technol 212:484–491CrossRefGoogle Scholar
  4. 4.
    Cheng SX, Li TG, Chandra S (2005) Producing molten metal droplets with a pneumatic droplet-on-demand generator. J Mater Process Technol 159:295–302CrossRefGoogle Scholar
  5. 5.
    Choi J, Chang Y (2005) Characteristics of laser aided direct metal/material deposition process for tool steel. Int J Mach Tools Manuf 45:597–607CrossRefGoogle Scholar
  6. 6.
    Chua CK, Chou SM, Wong TS (1998) A study of the state-of-the-art rapid prototyping technologies. Int J Adv Manuf Technol 14:146–152CrossRefGoogle Scholar
  7. 7.
    Fang M, Chandra S, Park CB (2008) Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyp J 14:44–52CrossRefGoogle Scholar
  8. 8.
    Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New YorkCrossRefGoogle Scholar
  9. 9.
    Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164CrossRefGoogle Scholar
  10. 10.
    Hollis K, Bartram B, Withers J, Storm R, Massarello J (2006) Plasma transferred arc deposition of beryllium. J Therm Spray Technol 15:785–789CrossRefGoogle Scholar
  11. 11.
    Jiang XS, Qi LH, Luo J, Zhou HHJM (2010) Research on accurate droplet generation for micro-droplet deposition manufacture. Int J Adv Manuf Technol 49:535–541CrossRefGoogle Scholar
  12. 12.
    Lee TK, Kang TG, Yang JS, Jo J, Kim KY, Choi BO, Kim DS (2008) Drop-on-demand solder droplet jetting system for fabricating microstructure. IEEE Trans Electron Packag Manuf 31:202–210CrossRefGoogle Scholar
  13. 13.
    Luo J, Qi LH, Jiang XS, Zhou JM, Huang H (2008) Research on lateral instability of the uniform-charged droplet stream during droplet-based freeform fabrication. Int J Mach Tools Manuf 48:289–294CrossRefGoogle Scholar
  14. 14.
    Montanero JM, Gañán-Calvo AM, Acero AJ, Vega EJ (2010) Micrometer glass nozzles for flow focusing. J Micromech Microeng 20:075,035CrossRefGoogle Scholar
  15. 15.
    Murr LE, Gaytan SM, Medina F, Martinez E, Martinez JL, Hernandez DH, Machado BI, Ramirez DA, Wicker RB (2010) Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting. Mater Sci Eng A - Struct Mater Prop Microstruct Process 527:1861–1868CrossRefGoogle Scholar
  16. 16.
    Orme M, Smith RF (2000) Enhanced aluminum properties by means of precise droplet deposition. J Manuf Sci Eng - Trans ASME 122:484–493CrossRefGoogle Scholar
  17. 17.
    Qian YP, Huang JH, Zhang HO, Wang GL (2008) Direct rapid high-temperature alloy prototyping by hybrid plasma-laser technology. J Mater Process Technol 208:99–104CrossRefGoogle Scholar
  18. 18.
    Rayleigh L (1879) On the instability of jets. Proc Lond Math Soc 10:4–13MATHGoogle Scholar
  19. 19.
    Song YA, Parka S, Choib D, Jeec H (2005) 3D welding and milling: part I—a direct approach for freeform fabrication of metallic prototypes. Int J Mach Tools Manuf 45:1057–1062CrossRefGoogle Scholar
  20. 20.
    Syed WUH, Pinkerton AJ, Li L (2006) Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping. Appl Surf Sci 252:4803–4808CrossRefGoogle Scholar
  21. 21.
    Taminger KMB, Hafley RA (2003) Electron beam freeform fabrication: a rapid metal deposition process. In: Proceedings of the 3rd annual automotive composites conference, Troy, Michigan, pp 1–6Google Scholar
  22. 22.
    Vega EJ, Montanero JM, Ferrera C (2011) Exploring the precision of backlight optical imaging in microfluidics close to the diffraction limit. Meas 44:1300–1311CrossRefGoogle Scholar
  23. 23.
    Vega EJ, Gañán-Calvo AM, Montanero JM, Cabezas MG, Herrada MA (2013) A novel technique for producing metallic microjets and microdrops. Microfluid Nanofluid 14:101–111CrossRefGoogle Scholar
  24. 24.
    Wang H, Kovacevic R (2001) Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy. Proc Inst Mech Eng B J Eng Manuf 215:1519–1527CrossRefGoogle Scholar
  25. 25.
    Wang H, Jiang W, Valant M, Kovacevic R (2003) Micro plasma powder deposition as a new solid freeform fabrication process. Proc Inst Mech Eng B J Eng Manuf 217:1641–1650CrossRefGoogle Scholar
  26. 26.
    Wanjara P, Brochua M, Jahazia M (2007) Electron beam freeforming of stainless steel using solid wire feed. Mater Des 28:2278–2286CrossRefGoogle Scholar
  27. 27.
    Williams CB, Cochran JK, Rosen DW (2011) Additive manufacturing of metallic cellular materials via three-dimensional printing. Int J Adv Manuf Technol 53:231–239CrossRefGoogle Scholar
  28. 28.
    Xiong X, Zhang H, Wang G (2009) Metal direct prototyping by using hybrid plasma deposition and milling. J Mater Process Technol 209:124–130CrossRefGoogle Scholar
  29. 29.
    Zekovic S, Dwivedi R, Kovacevic R (2007) Numerical simulation and experimental investigation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition. Int J Mach Tools Manuf 47:112–123CrossRefGoogle Scholar
  30. 30.
    Zhao N, Pan XM, Yu DQ, Ma HT, Wang L (2009) Viscosity and surface tension of liquid Sn-Cu lead-free solders. J Electron Mater 38:828–833CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • E. J. Vega
    • 1
  • M. G. Cabezas
    • 1
  • B. N. Muñoz-Sánchez
    • 1
  • J. M. Montanero
    • 1
  • A. M. Gañán-Calvo
    • 2
  1. 1.Depto. de Ingeniería Mecánica, Energética y de los MaterialesUniversidad de ExtremaduraBadajozSpain
  2. 2.Depto. de Mecánica de Fluidos e Ingeniería AeroespacialUniversidad de SevillaSevilleSpain

Personalised recommendations