Robust generalized numerical inspection fixture for the metrology of compliant mechanical parts

  • Hassan Radvar-Esfahlan
  • Souheil-Antoine Tahan


Free-form non-rigid parts form the essence of today’s automotive and aerospace industries. These parts have different shapes in free state due to their dimensional and geometric variations, gravity and residual strains. For the geometric inspection of such compliant parts, special inspection fixtures are used in combination with coordinate measuring systems (CMM) and/or optical data acquisition devices (scanners). In our previous work, a general procedure was developed to eliminate the use of inspection fixtures. We measured the similarities between CAD model and scanned data by taking the advantage of the geodesic distance metric. Then, using finite element non-rigid registration, we deformed the CAD model into range data to find the geometric deviations. Here, we apply a new method to robustify the generalized numerical inspection fixture. We filter out points causing incoherent geodesic distances and demonstrate that our approach has several significant advantages, one being the ability to handle parts with missing range data. The other advantage of the method presented is its capacity to inspect parts with large deformations.


Geometric inspection Compliant part Intrinsic geometry Geodesic distance Finite element non-rigid registration Multidimensional scaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Radvar-Esfahlan H, Tahan SA (2011) Nonrigid geometric metrology using generalized numerical inspection fixtures. Precis Eng 36:1–9CrossRefGoogle Scholar
  2. 2.
    Besl P, McKay H (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRefGoogle Scholar
  3. 3.
    Bentley J (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18:517CrossRefGoogle Scholar
  4. 4.
    Greenspan M, Godin G (2001) "A nearest neighbor method for efficient ICP"Google Scholar
  5. 5.
    Rusinkiewicz S, Levoy M (2001) "Efficient variants of the ICP algorithm" pp. 145–152Google Scholar
  6. 6.
    Holden M (2008) A review of geometric transformations for nonrigid body registration. Med Imaging IEEE Trans 27:111–128CrossRefGoogle Scholar
  7. 7.
    Borg I, Groenen PJF(2005) Modern multidimensional scaling: theory and applications. Springer VerlagGoogle Scholar
  8. 8.
    Schwartz E, Shaw A, Wolfson E (1989) A numerical solution to the generalized mapmaker’s problem: flattening nonconvex polyhedral surfaces. IEEE Trans Pattern Anal Mach Intell 11:1005–1008CrossRefGoogle Scholar
  9. 9.
    De Leeuw J (2005) "Applications of convex analysis to multidimensional scaling,"Google Scholar
  10. 10.
    Elad A, Kimmel R (2003) On bending invariant signatures for surfaces. IEEE Trans Pattern Anal Mach Intell 25:1285–1295CrossRefGoogle Scholar
  11. 11.
    Kimmel R, Sethian J (1998) Computing geodesic paths on manifolds. Proc Natl Acad Sci U S A 95:8431–8435CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Bronstein A, Bronstein M, Kimmel R (2006) Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc Natl Acad Sci 103:1168CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Chen X, Schmitt F (1992) "Intrinsic surface properties from surface triangulation". pp. 739–743Google Scholar
  14. 14.
    Yang M, Lee E (1999) Segmentation of measured point data using a parametric quadric surface approximation. Comput Aided Des 31:449–457CrossRefzbMATHGoogle Scholar
  15. 15.
    Alrashdan A, Motavalli S, Fallahi B (2000) Automatic segmentation of digitized data for reverse engineering applications. IIE Trans 32:59–69Google Scholar
  16. 16.
    Anguelov D, Taskar B, Chatalbashev V, Koller D, Gupta D, Heitz G, Ng A (2005) "Discriminative learning of markov random fields for segmentation of 3d scan data"Google Scholar
  17. 17.
    Munoz D, Vandapel N, Hebert M (2008) "Directional associative markov network for 3-d point cloud classification"Google Scholar
  18. 18.
    Shapovalov R, Velizhev A "Cutting-Plane Training of Non-associative Markov Network for 3D Point Cloud Segmentation"Google Scholar
  19. 19.
    Chen F, Brown GM, Song M (2000) Overview of three-dimensional shape measurement using optical methods. Opt Eng 39:10CrossRefGoogle Scholar
  20. 20.
    Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann Manuf Technol 56:810–835CrossRefGoogle Scholar
  21. 21.
    Gao J, Gindy N, Chen X (2006) An automated GD&T inspection system based on non-contact 3D digitization. Int J Prod Res 44:117–134CrossRefGoogle Scholar
  22. 22.
    Li Y, Gu P (2004) Free-form surface inspection techniques state of the art review. Comput Aided Des 36:1395–1417CrossRefGoogle Scholar
  23. 23.
    Li Y, Gu P (2005) Inspection of free-form shaped parts. Robot Comput Integr Manuf 21:421–430CrossRefzbMATHGoogle Scholar
  24. 24.
    Shi Q, Xi N (2008) "Automated data processing for a rapid 3D surface inspection system" IEEE Int Conf Robot Autom pp. 3939–3944Google Scholar
  25. 25.
    Ravishankar S, Dutt H, Gurumoorthy B (2010) Automated inspection of aircraft parts using a modified ICP algorithm. Int J Adv Manuf Technol 46:227–236CrossRefGoogle Scholar
  26. 26.
    Weckenmann A, Gabbia A (2005) "Testing formed sheet metal part using fringe projection and evaluation by virtual distortion compensation," in The 5th International Workshop on Automatic Processing of Fringe PatternsGoogle Scholar
  27. 27.
    Weckenmann A, Weickmann J, Petrovic N (2007) "Shortening of inspection processes by virtual reverse deformation," presented at the 4th International Conference and Exhibition on Design and Production of Machines and Dies/Molds, Cesme, TurkeyGoogle Scholar
  28. 28.
    Bourdet P, Clément A (1976) Controlling a complex surface with a 3 axis measuring machine. Ann CIRP 25:359–361Google Scholar
  29. 29.
    Lartigue C, Theibaut F, Bourdet P, Anwar N (2006) Dimensional metrology of flexible parts: identification of geometrical deviations from optical measurements. Adv Math Comput Tools Metrol VII:196CrossRefGoogle Scholar
  30. 30.
    Abenhaim G, Tahan S, Desrochers A, Maranzana R (2011) "A novel approach for the inspection of flexible parts without the use of special fixtures " ASME J Manuf Sci EngGoogle Scholar
  31. 31.
    Amberg B, Romdhani S, Vetter T (2007) "Optimal step nonrigid ICP algorithms for surface registration." pp. 1–8Google Scholar
  32. 32.
    Jaramillo A, Prieto F, Boulanger P (2013) Fixtureless inspection of deformable parts using partial captures. Int J Precis Eng Manuf 14:77–83CrossRefGoogle Scholar
  33. 33.
    Jaramillo A, Prieto F, Boulanger P (2013) "Fast dimensional inspection of deformable parts from partial views." Comput IndGoogle Scholar
  34. 34.
    Gentilini I, Shimada K (2011) Predicting and evaluating the post-assembly shape of thin-walled components via 3D laser digitization and FEA simulation of the assembly process. Comput Aided Des 43:316–328CrossRefGoogle Scholar
  35. 35.
    Dijkstra E (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Sethian J (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93:1591CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Bronstein A, Bronstein M, Bronstein M, Kimmel R (2007) Numerical geometry of non-rigid shapes, Springer-Verlag New York IncGoogle Scholar
  38. 38.
    Burago D, Burago Y, Ivanov S (2001) A course in metric geometryGoogle Scholar
  39. 39.
    Radvar-Esfahlan H, Tahan SA (2011) "Distance preserving dimensionality reduction methods and their applications in geometric inspection of nonrigid parts," 5th SASTECH Conference, IranGoogle Scholar
  40. 40.
    Bronstein A, Bronstein M, Kimmel R (2007) Efficient computation of isometry-invariant distances between surfaces. SIAM J Sci Comput 28:1812–1836CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Laboratoire d’ingénierie des produits, procédés et systèmes (LIPPS)École de technologie supérieureMontrealCanada

Personalised recommendations