Problems and solutions in machining of titanium alloys

  • A. PramanikEmail author


Titanium alloys are known as difficult-to-machine materials. The problems of machining titanium are many folds which depend on types of titanium alloys. This paper investigates the underlying mechanisms of basic challenges, such as variation of chip thickness, high heat stress, high pressure loads, springback, and residual stress based on the available literature. These are responsible for higher tool wear and worse machined surface integrity. In addition, many cutting tool materials are inapt for machining titanium alloys as those materials are chemically reactive to titanium alloys under machining conditions. To address these problems, latest techniques such as application of high pressure coolant, cryogenic cooling, tap testing, thermally enhanced machining, hybrid machining, and use of high conductive cutting tool and tool holder have also been discussed and correlated. It seems that all the solutions are not yet well accepted in the industrial domain; further advancement in those fields are required to reduce the machining cost of titanium alloys.


Titanium alloy Machining Challenges Productivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pramanik A, Islam MN, Basak A, Littlefair G (2013) Machining and tool wear mechanisms during machining titanium alloys. Adv Mater Res 651:338–343CrossRefGoogle Scholar
  2. 2.
    Chichili DR, Ramesh KT, Hemker KJ (1998) The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater 46:1025CrossRefGoogle Scholar
  3. 3.
    Ramesh KT (2002) Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close-packed metals and alloys. Metall Mater Trans 33 A:927–935Google Scholar
  4. 4.
    Follansbee P, Gray GT (1989) An analysis of the low temperature, low and high strain-rate deformation of Ti-6Al-4V. Metall Trans A 20:863–874CrossRefGoogle Scholar
  5. 5.
    Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68:262–274CrossRefGoogle Scholar
  6. 6.
    Ezugwu EO, Bonney J, Yamane Y (2003) An overview of machinability of aeroengine alloys. J Mat Process Technol 134:233–253CrossRefGoogle Scholar
  7. 7.
    Vyas A, Shaw MC (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng Trans ASME 211:163–172CrossRefGoogle Scholar
  8. 8.
    Obikawa T, Usui E (1996) J Manuf Sci Eng Trans ASME 118:208CrossRefGoogle Scholar
  9. 9.
    Ginting A, Nouari M (2006) Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material. Int J Mach Tools Manuf 46:758–768CrossRefGoogle Scholar
  10. 10.
    Barry J, Byrne G, Lennon D (2001) Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy. Int J Mach Tools Manuf 41:1055–1070CrossRefGoogle Scholar
  11. 11.
    Komanduri R, Von Turkovich BF (1981) New observations on the mechanism of chip formation when machining titanium alloys. Wear 69(2):179–188CrossRefGoogle Scholar
  12. 12.
    Takeyama H, Murakoshi A, Motonishi S, Narutaki N (1983) Study on machining of titanium alloys. Ann CIRP 32(1):65–69CrossRefGoogle Scholar
  13. 13.
    Nabhani F (2001) Robot Comput Integr Manuf 17:99CrossRefGoogle Scholar
  14. 14.
    Rahman M, Wang ZG, Wong YS (2006) A review on high-speed machining of titanium alloys. JSME Int J Ser C 49(1):11CrossRefGoogle Scholar
  15. 15.
    Hirosaki K, Shintani K et al (2004) JSME Int J Ser C 47(1):14CrossRefGoogle Scholar
  16. 16.
    Jawaid A, Sharif S, Koksal S (2000) J Mater Process Technol 99:266CrossRefGoogle Scholar
  17. 17.
    Settineri L, Faga MG (2008) Nanostructured cutting tools coatings for machining titanium. Mach Sci Technol 12:158CrossRefGoogle Scholar
  18. 18.
    Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: Effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tool Manuf 48:1613–1625CrossRefGoogle Scholar
  19. 19.
    Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76:15–34CrossRefGoogle Scholar
  20. 20.
    Sharma S, Dograb M, Suri NM (2009) Cooling techniques for improved productivity in turning. Int J Mach Tool Manuf 49:435–453CrossRefGoogle Scholar
  21. 21.
    Boothroyd G, Knight WA (2005) Fundamentals of machining and machine tools, 3rd edn. New York, CRCGoogle Scholar
  22. 22.
    Zhao H, Barber GC, Zou Q (2002) A study of flank wear in orthogonal cutting with internal cooling. Wear 253:957–962CrossRefGoogle Scholar
  23. 23.
    Childs THC, Maekawa K, Obikawa T, Yamane Y (2001) Metal machining theory and applications. Butterworth Heinemann, OxfordGoogle Scholar
  24. 24.
    Hartung PD, Kramer BM, von Turkovich BF (1982) Tool wear in titanium machining. Ann ClRP 31(1)Google Scholar
  25. 25.
    Trent EM, Wright PK (2000) Metal cutting, 4th edn. Butterworth Heinemann, OxfordGoogle Scholar
  26. 26.
    Barrow G (1973) A review of experimental and theoretical techniques for assessing cutting temperatures. Annals of the CIRP 22(2):203–211Google Scholar
  27. 27.
    Ying-lin H-y, Gang L, Ming Z (2009) Use of nitrogen gas in high-speed milling of Ti-6Al-4V. Trans Nonferrous Met Soc China 19:530–534CrossRefGoogle Scholar
  28. 28.
    Palanisamy S, McDonald D, Dargusch S (2009) Effects of coolant pressure on chip formation while turning Ti6Al4V alloy. Int J Mach Tool Manuf 49:739–743CrossRefGoogle Scholar
  29. 29.
    Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12–13):1353–1367CrossRefGoogle Scholar
  30. 30.
    Ezugwu EO, Bonney J, Da Silva RB, Cakir O (2007) Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. Int J Mach Tools Manuf 47(6):884–891CrossRefGoogle Scholar
  31. 31.
    Machado AR, Wallbank J, Ezugwu EO, Pashby IR (1998) Tool performance and chip control when machining Ti–6Al–4V and Inconel 901 using high pressure coolant supply. Mach Sci Technol 2:1–12CrossRefGoogle Scholar
  32. 32.
    Sorby K, Tonnessen K (2006) High-pressure cooling of face-grooving operations in Ti6Al4V. Proc Mech Eng B J Eng Manuf 220:1621–1627CrossRefGoogle Scholar
  33. 33.
    Vosough M, Svenningsson I (2004) Influence of high pressure water-jet assisted machining on surface residual stresses on the work-piece of Ti–6Al–4V alloy. In: Proceeding of SPIE, SPIE, Singapore, BellinghamGoogle Scholar
  34. 34.
    Venugopal KA, Paul S, Chattopadhyay AB (2007) Tool wear in cryogenic turning of Ti-6Al-4V alloy. Cryogenics 47:12–18CrossRefGoogle Scholar
  35. 35.
    Fan Y, Zheng M, Zhang D, Yang S, Cheng M (2011) Static and dynamic characteristic of cutting forces when high efficiency cutting Ti-6Al-4V. Adv Mat Res 305:122–128CrossRefGoogle Scholar
  36. 36.
    Schmitz TL, Smith KS (2008) Machining dynamics—frequency response to improve productivity. Springer, DordrechtGoogle Scholar
  37. 37.
    Leigh EP, Schueller JK, Tlusty J, Smith S (2000) Advanced machining techniques on titanium rotor parts. Presented at the American Helicopter Society 56th Annual Forum, Virginia BeachGoogle Scholar
  38. 38.
    Lennon AM, Ramesh KT (2004) The influence of crystal structure on the dynamic behavior of materials at high temperatures. Int J Plast 20:269–290CrossRefzbMATHGoogle Scholar
  39. 39.
    Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(6):174–182CrossRefGoogle Scholar
  40. 40.
    Sun S, Brandt M, Dargusch MS (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–568CrossRefGoogle Scholar
  41. 41.
    Komanduri R, Hou ZB (2002) On the thermoplastic shear instability in the machining of atitanium alloy (Ti–6Al–4V). Metall Mater Trans 33A:2995–3010CrossRefGoogle Scholar
  42. 42.
    Abele E, Fröhlich B (2008) High speed milling of titanium alloys. Adv Prod Eng Manag 3:131–140Google Scholar
  43. 43.
    Shaw MC (1984) Metal cutting principles. Clarendon, OxfordGoogle Scholar
  44. 44.
    Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of Incone1718 and Ti-6A1-6V-2Sn. Wear 202:142–148CrossRefGoogle Scholar
  45. 45.
    Ginting A, Nouari M (2006) Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material. Int J Mach Tool Manuf 46:758–768CrossRefGoogle Scholar
  46. 46.
    Campbell FC (2006) Manufacturing technology for aerospace structural materials, 1st edn. Elsevier, New YorkGoogle Scholar
  47. 47.
    Sutter G, Faure L, Molinari A, Ranc N, Pina V (2003) An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining. Int J Mach Tool Manuf 43:671–678CrossRefGoogle Scholar
  48. 48.
    Kikuchi M (2009) The use of cutting temperature to evaluate the machinability of titanium alloys. Acta Biomater 5:770–775CrossRefGoogle Scholar
  49. 49.
    Jawaid A, Che-haron CH, Abdullah A (1999) Tool wear characteristics in turing of titanium alloy Ti-6246. J Mater Process Technol 92–93:329–334CrossRefGoogle Scholar
  50. 50.
    Friedrich CR, Kulkarni VP (2004) Effect of workpiece springback on micromilling forces. Microsyst Technol 10:472–477CrossRefGoogle Scholar
  51. 51.
    Machai C, Biermann D (2011) Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: cooling with carbon dioxide snow. J Mater Process Technol 211:1175–1183CrossRefGoogle Scholar
  52. 52.
    Rashid RAR, Sun S, Wang G, Dargusch MS (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4 Al beta titaniumalloy. Int J Mach Tool Manuf 63:58–69CrossRefGoogle Scholar
  53. 53.
    Rashid RAR, Bermingham MJ, Sun S, Wang G, Dargusch MS (2012) The response of the high strength Ti–10V–2Fe–3Al beta titanium alloy to laser assisted cutting. Precis Eng. doi: 10.1016/j.precisioneng. 2012.12. 002 Google Scholar
  54. 54.
    Honghua SU, Peng LIU, Yucan FU, Jiuhua XU (2012) Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chin J Aeronaut 25:784–790CrossRefGoogle Scholar
  55. 55.
    Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Maître FL (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209:2223–2230CrossRefGoogle Scholar
  56. 56.
    Aspinwall DK, Dewes RC, Mantle AR (2005) The machining of γ-TiAl intermetallic alloys. Annals of the CIRP 54(1):99–104CrossRefGoogle Scholar
  57. 57.
    Klocke F, Settineri L, Lung D, Priarone PC, Arft M (2012) High performance cutting of gamma titanium aluminides: influence of lubricoolant strategy on tool wear and surface integrity. Wear. doi: 10.1016/j.wear.2012.12. 035 Google Scholar
  58. 58.
    Hood R, Lechner F, Aspinwall DK, Voice W (2007) Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive. Int J Mach Tool Manuf 47:1486–1492CrossRefGoogle Scholar
  59. 59.
    Soo SL, Hood R, Lannette M, Aspinwall DK, Voice WE (2011) Creep feed grinding of burn-resistant titanium (BuRTi) using superabrasive wheels. Int J Adv Manuf Technol 53:1019–1026CrossRefGoogle Scholar
  60. 60.
    Ding H, Shen N, Shin YC (2012) Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. J Mater Process Technol 212:601–613CrossRefGoogle Scholar
  61. 61.
    Rashid RAR, Sun S, Wang G, Dargusch MS (2012) The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining. Int J Mach Tool Manuf 63:41–43CrossRefGoogle Scholar
  62. 62.
    Sun S, Brandt M, Dargusch MS (2010) Thermally enhanced machining of hard-to-machine materials—a review. Int J Mach Tool Manuf 50:663–680CrossRefGoogle Scholar
  63. 63.
    Nandy AK, Gowrishankar MC, Paul S (2009) Some studies on high-pressure cooling in turning of Ti–6Al–4V. Int J Mach Tools Manuf 49(2):182–198CrossRefGoogle Scholar
  64. 64.
    Hong SY, Ding Y (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. Int J Mach Tool Manuf 41:1417–1437CrossRefGoogle Scholar
  65. 65.
    Hong SY, Markus I, Jeong W (2001) New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. Int J Mach Tool Manuf 41:2245–2260CrossRefGoogle Scholar
  66. 66.
    Bermingham MJ, Palanisamy S, Kent D, Dargusch MS (2012) A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti–6Al–4V cutting. J Mater Process Technol 212:752–765CrossRefGoogle Scholar
  67. 67.
    Perez RGV (2005) Wear mechanisms of WC inserts in face milling of gamma titanium aluminides. Wear 259:1160–1167CrossRefGoogle Scholar
  68. 68.
    Lauwers B (2011) Surface integrity in hybrid machining processes. Proc Eng 19:241–251CrossRefGoogle Scholar
  69. 69.
    Rajurkar KP, Zhu D, McGeough JA, Kozak J, De Silva A (1999) New developments in ECM. CIRP Ann Manuf Technol 48(2):567–579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCurtin UniversityPerthAustralia

Personalised recommendations