Temperature control of robotic friction stir welding using the thermoelectric effect

  • Jeroen De Backer
  • Gunnar Bolmsjö
  • Anna-Karin Christiansson
Open Access


Friction stir welding (FSW) of non-linear joints receives an increasing interest from several industrial sectors like automotive, urban transport and aerospace. A force-controlled robot is particularly suitable for welding complex geometries in lightweight alloys. However, complex geometries including three-dimensional joints, non-constant thicknesses and heat sinks such as clamps cause varying heat dissipation in the welded product. This will lead to changes in the process temperature and hence an unstable FSW process with varying mechanical properties. Furthermore, overheating can lead to a meltdown, causing the tool to sink down into the workpiece. This paper describes a temperature controller that modifies the spindle speed to maintain a constant welding temperature. A newly developed temperature measurement method is used which is able to measure the average tool temperature without the need for thermocouples inside the tool. The method is used to control both the plunging and welding operation. The developments presented here are applied to a robotic FSW system and can be directly implemented in a production setting.


Friction stir welding FSW Temperature control Force control Robotics Process automation 


  1. 1.
    Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1991) Friction stir butt welding. GB Patent No. 9125978.8, International patent application No. PCT/GB92/02203Google Scholar
  2. 2.
    Lienert TJ, Stellwag WL, Grimmett BB, Warke RW (2003) Friction stir welding studies on mild steel. Weld J 82:1–9CrossRefGoogle Scholar
  3. 3.
    Sato YS, Arkom P, Kokawa H, Nelson TW, Steel RJ (2008) Effect of microstructure on properties of friction stir welded Inconel Alloy 600. Mater Sci Eng, A 477(1–2):250–258. doi: 10.1016/j.msea.2007.07.002 Google Scholar
  4. 4.
    Cater S, Martin J, Galloway A, McPherson N (2013) Comparison between friction stir and submerged arc welding applied to joining DH36 and E36 shipbuilding steel. Friction Stir Welding and Processing VII. doi: 10.1002/9781118658345.ch6 Google Scholar
  5. 5.
    De Backer J, Christiansson AK, Oqueka JM, Bolmsjö G (2012) Investigation of path compensation methods for robotic friction stir welding. Industrial Robot: An International Journal 39(6):601–608. doi: 10.1108/01439911211268813 CrossRefGoogle Scholar
  6. 6.
    Cook GE, Crawford R, Clark DE, Strauss AM (2004) Robotic friction stir welding. Industrial Robot: An International Journal 31(1):55–63 doi: 10.1108/01439910410512000 Google Scholar
  7. 7.
    Soron M (2007) Robot system for flexible 3D friction stir welding. Örebro University, ÖrebroGoogle Scholar
  8. 8.
    Smith C (2000) Friction stir welding using a standard industrial robot. In: 2nd International friction stir welding symposium, Gothenburg, Sweden,Google Scholar
  9. 9.
    Von Strombeck A, Schilling C, Dos Santos JF (2000) Robotic friction stir welding—tool technology and applications. In: 2nd International friction stir welding symposium, Gothenburg, Sweden, TWIGoogle Scholar
  10. 10.
    Shi J, Wang Y, Zhang G, Ding H (2013) Optimal design of 3-DOF PKM module for friction stir welding. Int J Adv Manuf Technol 66(9–12):1879–1889 doi: 10.1007/s00170-012-4467-7
  11. 11.
    Longhurst W, Strauss A, Cook G, Fleming P (2010) Torque control of friction stir welding for manufacturing and automation. Int J Adv Manuf Technol 51(9):905–913. doi: 10.1007/s00170-010-2678-3 CrossRefGoogle Scholar
  12. 12.
    Davis TA, Ngo PD, Shin YC (2012) Multi-level fuzzy control of friction stir welding power. Int J Adv Manuf Technol 59(5–8):559–567. doi: 10.1007/s00170-011-3522-0 CrossRefGoogle Scholar
  13. 13.
    Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding—experimental and numerical studies. J Manuf Sci Eng 125(1):138–145 doi: 10.1115/1.1537741 Google Scholar
  14. 14.
    Schmidt H, Hattel J (2005) Modelling heat flow around tool probe in friction stir welding. Science and Technology of Welding and Joining 10(2):176–186. doi: 10.1179/174329305x36070 CrossRefGoogle Scholar
  15. 15.
    Cederqvist L, Garpinger O, Hägglund T, Robertsson A (2012) Cascade control of the friction stir welding process to seal canisters for spent nuclear fuel. Control Eng Pract 20(1):35–48. doi: 10.1016/j.conengprac.2011.08.009 CrossRefGoogle Scholar
  16. 16.
    Smith C, Schroeder K (2012) An automated path planning and programming system with real-time adaptive control for friction stir processing of cast surfaces. In: 9th international friction stir welding symposium, Huntsville (AL), USAGoogle Scholar
  17. 17.
    Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2011) Toward automation of friction stir welding through temperature measurement and closed-loop control. J Manuf Sci Eng 133(5):051008. doi: 10.1115/1.4005034 CrossRefGoogle Scholar
  18. 18.
    De Backer J, Bolmsjö G (2013) Thermoelectric method for temperature measurement in friction stir welding. Science and Technology of Welding and Joining. doi: 10.1179/1362171813Y.0000000135 Google Scholar
  19. 19.
    Lennartson B (2002) Reglerteknikens grunder. Studentlitteratur, LundGoogle Scholar
  20. 20.
    Martin PM (2011) Introduction to surface engineering and functionally engineered materials. Scrivener, HobokenCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Jeroen De Backer
    • 1
  • Gunnar Bolmsjö
    • 1
  • Anna-Karin Christiansson
    • 1
  1. 1.Department of Engineering ScienceUniversity WestTrollhättanSweden

Personalised recommendations