Advertisement

A closed-form solution for thermal and deformation fields in laser bending process of different materials

  • F. LambiaseEmail author
  • A. Di Ilio
ORIGINAL ARTICLE

Abstract

An analytical solution for temperature and deformation fields produced by laser forming is derived. The effects of process parameters are investigated on samples of different materials and thicknesses. Experimental tests were carried out using a high-power diode laser on a poorly conductive material (AISI 304) and a highly conductive one (AA 6013) to evaluate the accuracy of the proposed model. A 2D FEM is developed to calibrate and validate the new model. The model predictions are in good agreement with experimental measurements even under low scanning speed due to the effect of conductive heat exchange of the irradiated zone with surrounding material. Based on the achieved results, a simple method for optimizing the process productivity is also discussed.

Keywords

Laser forming Laser bending Thin sheets Bending mechanism Analytical model Process optimization Temperature gradient mechanism FEM Temperature prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luo Y, He K, Du R (2010) A new sheet metal forming system based on the incremental punching, part 1: modeling and simulation. Int J Adv Manuf Technol 51(5–8):481–491CrossRefGoogle Scholar
  2. 2.
    Luo Y, He K, Du R (2010) A new sheet metal forming system based on incremental punching, part 2: machine building and experiment results. Int J Adv Manuf Technol 51(5–8):493–506CrossRefGoogle Scholar
  3. 3.
    Ramezani M, Ripin ZM, Ahmad R (2010) Sheet metal forming with the aid of flexible punch, numerical approach and experimental validation. CIRP J Manuf Sci Technol 3(3):196–203CrossRefGoogle Scholar
  4. 4.
    Fu MW, Li H, Lu J, Lu SQ (2009) Numerical study on the deformation behaviors of the flexible die forming by using viscoplastic pressure-carrying medium. Comput Mater Sci 46(4):1058–1068CrossRefGoogle Scholar
  5. 5.
    Hu Z, Li M, Cai Z, Gong X (2009) Continuous flexible forming of three-dimensional surface parts using bendable rollers. Mater Sci Eng, A 499(1–2):234–237CrossRefGoogle Scholar
  6. 6.
    Shim DS, Yang DY, Kim KH, Chung SW, Han MS (2010) Investigation into forming sequences for the incremental forming of doubly curved plates using the line array roll set (LARS) process. Int J Mach Tool Manuf 50(2):214–218CrossRefGoogle Scholar
  7. 7.
    Shen H, Vollertsen F (2009) Modelling of laser forming—a review. Comput Mater Sci 46(4):834–840CrossRefGoogle Scholar
  8. 8.
    Kim J, Na SJ (2009) 3D laser-forming strategies for sheet metal by geometrical information. Opt Laser Technol 41(6):843–852CrossRefGoogle Scholar
  9. 9.
    Liu C, Yao Y (2005) FEM-based process design for laser forming of doubly curved shapes☆. J Manuf Process 7(2):109–121CrossRefGoogle Scholar
  10. 10.
    Vollertsen F (1994) An analytical model for laser bending. Lasers Eng 2:261–276Google Scholar
  11. 11.
    Hoseinpour Gollo M, Mahdavian SM, Moslemi Naeini H (2011) Statistical analysis of parameter effects on bending angle in laser forming process by pulsed Nd:YAG laser. Opt Laser Technol 43(3):475–482CrossRefGoogle Scholar
  12. 12.
    Ilio AD, Paoletti A (2008) Experimental investigation on the laser bending of steel sheets by means of diode laser. In: Teti (ed) CIRP - ICME-6, Naples, ItalyGoogle Scholar
  13. 13.
    Antonelli O, Ilio AD, Paoletti A (2006) Sheet bending by means of diode laser: analysis of process parameters. In: Teti (ed) CIRP - ICME-5, Ischia -ItalyGoogle Scholar
  14. 14.
    Cheng PJ, Lin SC (2000) An analytical model for the temperature field in the laser forming of sheet metal. J Mater Process Technol 101:260–267CrossRefGoogle Scholar
  15. 15.
    Shen H, Shi Y, Yao Z, Hu J (2006) An analytical model for estimating deformation in laser forming. Comput Mater Sci 37(4):593–598CrossRefGoogle Scholar
  16. 16.
    Yau CL, Chan KC, Lee WB (1997) A new analytical model for laser bending. In: LANE, pp 357–366Google Scholar
  17. 17.
    Shen H, Yao Z, Shi Y, Hu J (2006) An analytical formula for estimating the bending angle by laser forming. J Mech Eng Sci 220(2):243–247CrossRefGoogle Scholar
  18. 18.
    Zhang L (2004) Finite element modeling discretization requirements for the laser forming process. Int J Mech Sci 46(4):623–637CrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang P, Guo B, Shan D, Ji Z (2007) FE simulation of laser curve bending of sheet metals. J Mater Process Technol 184(1–3):157–162CrossRefGoogle Scholar
  20. 20.
    Liu F, Chan K, Tang C (2007) Numerical simulation of laser forming of aluminum matrix composites with different volume fractions of reinforcement. Mater Sci Eng, A 458(1–2):48–57CrossRefGoogle Scholar
  21. 21.
    Ji Z, Wu S (1998) FEM simulation of the temperature field during the laser forming of sheet metal. J Mater Process Technol 74:89–95CrossRefGoogle Scholar
  22. 22.
    Kyrsanidi AK, Kermanidis TB, Pantelakis SG (2000) An analytical model for the prediction of distortions caused by the laser forming process. J Mater Process Technol 104:94–102CrossRefGoogle Scholar
  23. 23.
    Vollertsen F (1994) An analytical model for laser bending. In: Lasers in Engineering, pp 261–276Google Scholar
  24. 24.
    Lambiase F (2012) An analytical model for evaluation of bending angle in laser forming of metal sheets. J Mater Eng Perform 21:2044–2052CrossRefGoogle Scholar
  25. 25.
    Carslaw HS, Jaeger JC (1986) Conduction of heat in solids. Oxford University Press, BristolzbMATHGoogle Scholar
  26. 26.
    Shi Y, Shen H, Yao Z, Hu J (2007) Temperature gradient mechanism in laser forming of thin plates. Opt Laser Technol 39(4):858–863CrossRefGoogle Scholar
  27. 27.
    Safdar S, Li L, Sheikh M, Liu Z (2007) Finite element simulation of laser tube bending: effect of scanning schemes on bending angle, distortions and stress distribution. Opt Laser Technol 39(6):1101–1110CrossRefGoogle Scholar
  28. 28.
    Cheng J, Lawrenceyao Y (2001) Cooling effects in multiscan laser forming. J Manuf Process 3(1):60–72CrossRefGoogle Scholar
  29. 29.
    Bao J, Yao YL (2001) Analysis and prediction of edge effects in laser bending. J Manuf Sci Eng 123(1):53CrossRefGoogle Scholar
  30. 30.
    Walczyk D, Vittal S (2000) Bending of titanium sheet using laser forming. J Manuf Process 2(4):258–269CrossRefGoogle Scholar
  31. 31.
    Kyrsanidi AK, Kermanidis TB, Pantelakis SG (2000) An analytical model for the prediction of distortions. J Mater Process Technol 104:94–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Industrial and Information Engineering and EconomicsUniversity of L’AquilaL’AquilaItaly

Personalised recommendations