An efficient algorithm for press line optimisation

  • Bo Svensson
  • Fredrik Danielsson
  • Bengt Lennartson


Automated manufacturing processes such as automotive tandem press lines include time dependent complex control functions. All motions and critical interactions between moving parts must be synchronised to avoid collisions and reach high production rate. It is even for a skilled operator hard to optimise these processes on-line. Therefore, a hardware-in-the-loop simulation including real industrial control systems and its control code establish an essential tool for optimisation. Additionally, an efficient optimisation algorithm is required to reach a useful simulation-based optimisation method. This paper proposes a new optimisation algorithm starting with the Lipschitzian algorithm DIRECT as global search and then switches over to the Nelder–Mead simplex algorithm for local convergence. During the switch over, the new algorithm determines all local candidates of the set of points evaluated by DIRECT and starts multiple Nelder–Mead local searches in each of these. An optimisation study for an automotive press line shows that the proposed algorithm combines the benefits of the Lipschitzian and the simplex algorithms in an efficient way. The importance of multiple local searches from all local candidates found is also shown in the study. Based on the same number of function evaluations, it is also shown that this algorithm reaches improved press line performances compared to the stochastic differential evolution algorithm.


Hardware-in-the-loop Industrial control system Non-gradient optimisation algorithm Simulation-based optimisation Time-driven simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    April J, Glover F, Kelly JP, Laguna M (2004) New advances and applications for marrying simulation and optimization. In Proc of the 2004 Winter Simulation Conference, New Jersey, USA, pp 255–260Google Scholar
  2. 2.
    Andradóttir S (1998) Simulation optimization. In: Banks J (ed) Handbook of simulation: principles, methodology, advances, applications and practise. John Wiley & Sons, New YorkGoogle Scholar
  3. 3.
    Kleijnen JPC (2008) Response surface methodology for constrained simulation optimization: an overview. Simul Model Pract Theory 16(1):50–64CrossRefGoogle Scholar
  4. 4.
    Pinter JD (2002) Global optimization: software, test problems and applications. In: Pardalos PM, Romeijn HE (eds) Handbook of Global Optimization, vol 2. Kluwer, BostonGoogle Scholar
  5. 5.
    Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157–181MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313CrossRefzbMATHGoogle Scholar
  7. 7.
    Jenkinson M, Bannister P, Brady M, Smith S (2001) Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841CrossRefGoogle Scholar
  8. 8.
    Svensson B, Danielsson F, Lennartson B (2012) Time synchronised hardware-in-the-loop simulation—applied to a sheet-metal press line optimisation. Control Eng Pract 20(8):792–804CrossRefGoogle Scholar
  9. 9.
    Svensson B, Danielsson F, Lennartson B (2005) A Virtual Real-Time Model for Control Software Development - applied on a Sheet-Metal Press Line. In Proc of 3rd International Industrial Simulation Conference, Berlin, Germany, pp 119–123Google Scholar
  10. 10.
    Goor RM (2003) New coordination algorithms improve the throughput of a GM press line. In Proc of the International. Robots & Vision Conference, ChicagoGoogle Scholar
  11. 11.
    Lin BT, Kuo CC (2008) Application of an integrated CAD/CAE/CAM system for stamping dies for automobiles. Int J Adv Manuf Technol 35:1000–1013CrossRefGoogle Scholar
  12. 12.
    Emel E, Tasci HBE (1997) An optimization approach for scheduling of jobs on lines of press machines. In Proc of the 6th Industrial Engineering Research Conference, Miami Beach, Florida, USAGoogle Scholar
  13. 13.
    Ozalp SA (2006) A genetic algorithm for scheduling of jobs on lines of press machines. Large-scale scientific computing, lecture notes of computer science 3743. Springer-Verlag, Berlin, pp 535–543Google Scholar
  14. 14.
    Kuk S, Soh SI, Lim SM, Joung SH, Noh SD (2009) Construction and Application of a Virtual Press Shop. In Proc of the International Multi Conference of Engineers and Computer Scientists vol. II, Hong Kong, pp 1776–1782Google Scholar
  15. 15.
    Hoffmann H, Kohnhäuser M (2002) Strategies to optimise the part transport in crossbar transfer presses. CIRP Ann Manuf Technol 51(1):27–32CrossRefGoogle Scholar
  16. 16.
    Li HF, Ceglarec D (2002) Optimal trajectory planning for material handling compliant sheet metal parts, transactions of the ASME. J Mech Des 124(2):213–222CrossRefGoogle Scholar
  17. 17.
    Liao X, Wang G (2003) Evolutionary path planning for robot-assisted part handling in sheet-metal bending. Robot Comput Integr Manuf 19(5):425–430CrossRefGoogle Scholar
  18. 18.
    García-Sedano JA, Bernardo JA, González AG, de Gauna OBR, de Mendivil RYG (2010) Stamping Line Optimization Using Genetic Algorithms and Virtual 3D Line Simulation. Hybrid Artificial Intelligence Systems. Lecture Notes in Computer Science. Springer Berlin, Heidelberg, pp 319–326Google Scholar
  19. 19.
    Neugebauer R, Bouzakis KD, Denkena B, Klocke F, Sterzing A, Tekkaya AE, Wertheim R (2011) Velocity effects in metal forming and machining processes. CIRP Ann Manuf Technol 60(2):627–650CrossRefGoogle Scholar
  20. 20.
    Osakada K, Mori K, Altan T, Groche P (2011) Mechanical servo press technology for metal forming. CIRP Ann Manuf Technol 60(2):651–672CrossRefGoogle Scholar
  21. 21.
    Svensson B, Danielsson F, Lennartson B (2009) Simulation Based Optimization of a Sheet-Metal Press Line. In Proc of 14th IEEE International Conference on Emergency Technologies and Factory Automation, Mallorca, Spain, pp 447–454Google Scholar
  22. 22.
    Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wright MH (1995) Direct search methods: once scorned, now respectable. In Proc of 1995 Dundee Biennial Conference on Numerical Analysis, Addison-Wesley, Reading, MA, pp 191–208Google Scholar
  24. 24.
    Horst R, Pardalos PM, Thoai NV (2000) Introduction to Global Optimization, 2nd edn. Kluwer Academic Publishers, DordrechtCrossRefzbMATHGoogle Scholar
  25. 25.
    Hansen P, Jaumard B, Lu SH (1992) Global optimization of univariate Lipschitz functions: II. New algorithms and computational comparison. Math Program 55:273–292MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gablonsky JM (2001) Modifications of the direct algeorithm. Dissertation. North Carolina State University, RaleighGoogle Scholar
  27. 27.
    Ali MM, Törn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31(10):1703–1725MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lampinen J, Storn R (2004) Differential Evolution. In: Onwubolu GC, Babu BV (eds) New optimization techniques in engineering. Springer, BerlinGoogle Scholar
  29. 29.
    Storn R (2008) Differential Evolution Research - Trends and Open Questions. In: Chakraborty UK (ed) Advances in differential evolution, studies in computational intelligence. Springer, New YorkGoogle Scholar
  30. 30.
    Wachowiak MP, Peters TM (2006) High-performance medical image registration using new optimization techniques. IEEE Trans Inf Technol Biomed 10(2):344–353CrossRefGoogle Scholar
  31. 31.
    Moles CG, Banga JR, Keller K (2004) Solving nonconvex climate control problems: pitfalls and algorithm performances. Appl Soft Comput 5:35–44CrossRefGoogle Scholar
  32. 32.
    Ljungberg K, Holmgren S, Carlborg O (2004) Simultaneous search for multiple QTL using the global optimization algorithm DIRECT. Bioinformatics 20(12):1887–1895CrossRefGoogle Scholar
  33. 33.
    Pinter JD (1996) Global Optimization in Action, Continuous and Lipschitz Optimization. Algorithms, Implementations and Applications. Kluwer Academics Publishers, Dordrecht/Boston/LondonzbMATHGoogle Scholar
  34. 34.
    Goldberg DE, Voessner S (1999) Optimising global–local search hybrids. In Proc of Genetic and Evolutionary Computation Conference pp 220–228Google Scholar
  35. 35.
    Cox S, Haftka RT, Baker C, Grossman B, Mason W, Watson LT (2001) A comparison of global optimization methods for the design of a high-speed civil transport. J Glob Optim 21:415–433MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Jones DR (2001) DIRECT global optimization algorithm. In: Floudas CA, Pardalos PM (eds) Encyclopaedia of optimization. Kluwer Academic Publishers, DordrechtGoogle Scholar
  37. 37.
    Nelson SA, Papalambros PY (1998) A modification to Jones global optimization algorithm for fast local convergence. In Proc of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, pp 341–348Google Scholar
  38. 38.
    Chelouah R, Siarry P (2003) Genetic and Nelder–Mead algorithms hybridised for a more accurate global optimization of continuous multiminima functions. Eur J Oper Res 148(2):335–348MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Chelouah R, Siarry P (2005) A hybrid method combining continuous tabu search and Nelder–Mead simplex algorithms for the global optimization of multiminima functions. Eur J Oper Res 161:636–654MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Durand N, Alliot JM (1999) A combined Nelder-Mead simplex and genetic algorithm. In Proc of the Genetic and Evolutionary Computation Conference, Orlando, FL, USA, pp 1–7Google Scholar
  41. 41.
    Yang R, Douglas I (1998) Simple genetic algorithm with local turning-efficient global optimising technique. J Optim Theory Appl 98(2):449–465MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Svensson B, Nia NK, Danielsson F, Lennartson B (2011) Sheet-Metal Press Line Parameter Tuning using a Combined DIRECT and Nelder-Mead Algorithm. In Proc of 16th IEEE International Conference on Emergency Technologies and Factory Automation, France, pp 207–214Google Scholar
  43. 43.
    Nia NK, Danielsson F, Lennartson B (2011) A faster collision detection method applied on a sheet metal press line. In Proc of 21st International Conference on Flexible Automation and Intelligent Manufacturing, Taiwan, pp 833–840Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Bo Svensson
    • 1
  • Fredrik Danielsson
    • 1
  • Bengt Lennartson
    • 2
  1. 1.Department of Engineering ScienceUniversity WestTrollhättanSweden
  2. 2.Department of Signals and SystemsChalmers University of TechnologyGothenburgSweden

Personalised recommendations