Optimal milling conditions for carbon/epoxy composite material using damage and vibration analysis

  • H. Chibane
  • A. Morandeau
  • R. Serra
  • A. Bouchou
  • R. Leroy
Original Article

Abstract

The use of composite parts, especially in aeronautics, is increasing at an exponential rate. However, machining of this material is complicated due to different phenomena such as delamination, burned resin, and cutting edge failure. The aim of the present study is to introduce a new method for optimizing cutting conditions, using a correlation between vibration and machining defects. Down milling of a carbon/epoxy composite material with a single polycrystalline diamond insert was performed. To minimize the number of experiments, a central composite design with 20 combinations was studied, using parameters such as cutting speed, depth of cut, and feed rate. Vibration levels were measured for each cutting condition. Results obtained from the analysis of variance confirm that the mathematical models used in this study could adequately describe the performance indicators. A vibration criterion was defined to describe the regions with and without defects of the machining. This technique validated through testing should help the operator to choose the optimal cutting conditions.

Keywords

Milling Composites Design of experiments Cutting parameters Machining defects Vibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chung chen T, Wang chou C (1997) Prediction of the location of delamination in the drilling of composite laminates. J Mater Process Technol 70(1–3):185–198Google Scholar
  2. 2.
    Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J Mater Process Technol 160:160–167CrossRefGoogle Scholar
  3. 3.
    Durao LMP, Gonçalves DJS, Tavares JMRS, Albuquerque VH, Vieira AA, Marques AT (2010) Drilling tool geometry evaluation for reinforced composite laminates. Compos Struct 92:1545–1550CrossRefGoogle Scholar
  4. 4.
    Sheikh-Ahmad JY (2008) Machining of polymer composites, 1st edn. Springer-Verlag New York Inc, New YorkGoogle Scholar
  5. 5.
    Lasota A, Rusek P (1983) Influence of random vibrations on the roughness of turned surfaces. J Mech Work Technol 7(3):277–284CrossRefGoogle Scholar
  6. 6.
    Ghidossi P, El Mansori M, Pierron F (2004) Edge machining effects on the failure of polymer matrix composite coupons. Compos Appl Sci Manuf 35:7–8CrossRefGoogle Scholar
  7. 7.
    Lachaud F, Piquet R, Collombet F, Surcin L (2001) Drilling of composite structures. Compos Struct 52(3–4):511–516CrossRefGoogle Scholar
  8. 8.
    Zitoune R, Collombet F, Lachaud F, Piquet R, Pasquet P (2005) Experiment calculation comparison of the cutting conditions representative of the long fiber composite drilling phase. Compos Sci Technol 65(3–4):455–466CrossRefGoogle Scholar
  9. 9.
    Teti R (2002) Machining of composite materials. CIRP Ann Manuf Technol 51(2):611–634CrossRefGoogle Scholar
  10. 10.
    Hocheng H, Puw HY, Huang Y (1993) Preliminary study on milling of unidirectional carbon fibre-reinforced plastics. Compos Manuf 4(2):103–108CrossRefGoogle Scholar
  11. 11.
    Iliescu D (2008) L’usinage á sec des composites. ENSAM, Arts et Métier ParistechGoogle Scholar
  12. 12.
    Khashaba UA (2004) Delamination in drilling GFR-thermoset composites. Compos Struct 63:313–327CrossRefGoogle Scholar
  13. 13.
    Marques AT, Duroa LM, Magalhaes AG, Silva JF, Tavares JMRS (2009) Delamination analysis of carbon fibre reinforced laminates: evaluation of a special step drill. Compos Sci Technol 69:2376–2382CrossRefGoogle Scholar
  14. 14.
    Koplev A, Lystrup A, Vorm T (1983) The cutting process, chips, and cutting forces in machining CFRP. Compos 14(4):371–376CrossRefGoogle Scholar
  15. 15.
    Ramulu M (1997) Machining and surface integrity of fibre-reinforced plastic composites. Sadhana 22(3):449–472CrossRefGoogle Scholar
  16. 16.
    Rawat S, Attia H (2009) Characterization of the dry high speed drilling process of woven composites using machinability maps approach. CIRP Ann Manuf Technol 58(1):105–108CrossRefGoogle Scholar
  17. 17.
    Piquet R, Ferret B, Lachaud F, Swider P (2000) Experimental analysis of drilling damage in thin carbon/epoxy plate using special drills. Compos Appl Sci Manuf 31(10):1107–1115CrossRefGoogle Scholar
  18. 18.
    Guegan P, Le Maitre F, Hamann JC (1992) Contribution à l’usinage des materiaux composites. Actes de Colloques La construction navale en composites 45:7–9Google Scholar
  19. 19.
    Arola D, Ramulu M (1997) Orthogonal cutting of fiber-reinforced composites: a finite element analysis. Int J Mech Sci 39(5):597–613CrossRefMATHGoogle Scholar
  20. 20.
    Jang DY, Choi YG, Kim HG, Hsiao A (2006) Study of the correlation between surface roughness and cutting vibrations to develop an online roughness measuring technique in hard turning. Int J Mach Tool Manuf 36(4):453–464CrossRefGoogle Scholar
  21. 21.
    Dimarogonas AD, Haddad SD (1992) Vibration for engineers. Prentice Hall, Englewood cliffsMATHGoogle Scholar
  22. 22.
    Mer B, Diniz AE (1994) Correlating tool wear, tool life, surface-roughness and tool vibration in finish turning with coated carbide tools. Wear 173(1–2):137–144Google Scholar
  23. 23.
    Davim JP, Reis P (2003) Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos Struct 59(4):481–487CrossRefGoogle Scholar
  24. 24.
    Tsao CC (2008) Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials. Int J Adv Manuf Technol 37(11):1061–1068MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tsao CC, Kuo KL, Hsu IC (2012) Evaluation of a novel approach to a delamination factor after drilling composite laminates using a core-saw drill. Int J Adv Manuf Technol 59:617–622CrossRefGoogle Scholar
  26. 26.
    Morandeau A, Chibane H, Bouchou A, Serra R, Bonhoure D, Leroy R (2012) Machining carbon fibre reinforced plastics: lead angle effect. Int J Machining Machinability Mat (in press). http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijmmm
  27. 27.
    Montgomery DC (1997) Design and analysis of experiments, 4th edn. Wiley, New YorkMATHGoogle Scholar
  28. 28.
    Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J Roy Stat Soc B Stat Meth 13:1–45MathSciNetMATHGoogle Scholar
  29. 29.
    Box GEP, Hunter JS (1957) Multi-factor experimental design for exploring response surfaces. Ann Math Stat 28:195–241MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Cochran WG, Cox GM (1992) Experimental design, 2nd edn. Wiley, New YorkGoogle Scholar
  31. 31.
    Safety cutting tool company (2009) Milling catalogGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • H. Chibane
    • 1
  • A. Morandeau
    • 2
  • R. Serra
    • 1
  • A. Bouchou
    • 1
  • R. Leroy
    • 2
  1. 1.Laboratoire de Mécanique et de Rhéologie, Centre d’Etude et de Recherche sur les Outils Coupants, ENI Val de LoireBlois CedexFrance
  2. 2.Laboratoire de Mécanique et de Rhéologie, Centre d’Etude et de Recherche sur les Outils CoupantsUniversité François-Rabelais de ToursToursFrance

Personalised recommendations