Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process

ORIGINAL ARTICLE

Abstract

This paper presents an investigation on WEDM of pure titanium (grade-2). An attempt has been made to model the four response variables, i.e., machining rate, surface roughness, dimensional deviation and wire wear ratio in WEDM process using response surface methodology. The experimental plan is based on Box–Behnken design. The six parameters, i.e., pulse on time, pulse off time, peak current, spark gap voltage, wire feed and wire tension have been varied to investigate their effect on output responses. These responses have been optimized using multiresponse optimization through desirability. The ANOVA has been applied to identify the significance of developed model. The test results confirm the validity and adequacy of the developed RSM model. Finally, the optimum parametric setting has been designed for the optimization of process.

Keywords

WEDM Titanium Response surface methodology Box–Behnken design Desirability function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Islam MN, Rafai NH, Subramanian SS (2010) An investigation into dimensional accuracy achievable in wire-cut electrical discharge machining. Proceedings of the World Congress on Engineering, vol III. London UKGoogle Scholar
  2. 2.
    Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68:262–274CrossRefGoogle Scholar
  3. 3.
    Lin YC, Yan BH, Chang YS (2000) Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM. J Mater Process Technol 104:171–177CrossRefGoogle Scholar
  4. 4.
    Sommer C, Sommer S (2005) Complete EDM handbook. Advance, HoustonGoogle Scholar
  5. 5.
    Sarkar S, Mitra S, Bhattacharyya B (2006) Parametric optimization of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. Int J Adv Manuf Technol 27:501–508. doi:10.1007/s00170-004-2203-7 CrossRefGoogle Scholar
  6. 6.
    Sarkar S, Mitra S, Bhattacharyya B (2005) Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. J Mater Process Technol 159:286–294. doi:10.1016/jmatprotech.2004.10.009 CrossRefGoogle Scholar
  7. 7.
    Hseigh SF, Chen SL, Lin MH (2009) The machining characteristics and shape recovery ability of Ti Ni X(X= Zr, Cr) ternary shape memory alloys using WEDM. Int J Mach Tools Manuf 49:509–514. doi:10.1016/jmachtools.2008.12.013 CrossRefGoogle Scholar
  8. 8.
    Hewidy MS, El-Taweel TA, El-Safty MF (2005) Modeling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. J Mater Process Technol 169:328–336. doi:10.1016/j.matprotech.2005.04.078 CrossRefGoogle Scholar
  9. 9.
    Mahapatra SS, Patnaik A (2006) Parametric optimization of wire electrical discharge machining (WEDM) process using Taguchi method. J Braz Soc Mech Sci Eng XXVIII(4):422–429CrossRefGoogle Scholar
  10. 10.
    Kuang-Yuan K, Ko-Ta C (2008) Modeling and analysis of machinability evaluation in the wire electrical discharge machining (WEDM) process of aluminum oxide-based ceramic. Mater Manuf Process 23:241–250. doi:10.1080/10426910701860616 CrossRefGoogle Scholar
  11. 11.
    Porous D, Zaboruski S (2009) Semi empirical model of efficiency of wire electric discharge machining of hard to machine materials. J Mater Process Technol 209:1247–1253. doi:10.1016/j.jmatprotec.2008.03.046 CrossRefGoogle Scholar
  12. 12.
    Kuriakose S, Shunmugam MS (2005) Multi-objective optimization of wire-electro-discharge machining process by non-dominated sorting Genetic Algorithm. J Mater Process Technol 170:133–141. doi:10.1016/j.jmatprotec.2005.04.105 CrossRefGoogle Scholar
  13. 13.
    Liao YS, Yu YP (2004) Study of specific discharge energy in WEDM and its application. Int J Mach Tools Manuf 44:1373–1380. doi:10.1016/j.ijmachtools.2004.04.008 CrossRefGoogle Scholar
  14. 14.
    Spedding TA, Wang ZQ (1997) Study on modeling of wire EDM process. J Mater Process Technol 69:18–28. doi:10.1016/S0924-0136(96)00033-7 CrossRefGoogle Scholar
  15. 15.
    Scott D, Boyina S, Rajurkar KP (1991) Analysis and optimization of parameter combinations in wire electrical discharge machining. Int J Prod Res 29:2189–2207CrossRefMATHGoogle Scholar
  16. 16.
    Tarng YS, Ma SC, Chung LK (1995) Determination of optimal cutting parameters in wire electrical discharge machining. Int J Mach Tools Manuf 35:1693–1701CrossRefGoogle Scholar
  17. 17.
    Liao YS, Huang JT, Su HC (1997) A study on the machining parameters optimization of wire electrical discharge machining. J Mater Process Technol 71:487–493CrossRefGoogle Scholar
  18. 18.
    Manna A, Bhattacharya B (2006) Taguchi and gauss elimination method: a dual response approach for parametric optimization of CNC wire cut EDM of PRAISiCMMC. Int J Adv Manuf Technol 28:67–75. doi:10.1007/s00170-004-2331-0 CrossRefGoogle Scholar
  19. 19.
    Ramakrishnan R, Karunamoorthy L (2006) Multi response optimization of wire EDM operations using robust design of experiments. Int J Adv Manuf Technol 29:105–112. doi:10.1007/s00170-004-2496-6 CrossRefGoogle Scholar
  20. 20.
    Sarkar S, Sekh M, Mitra S, Bhattacharyya B (2008) Modeling and optimization of wire electrical discharge machining of γ-TiAl in trim cutting operation. J Mater Process Technol 205:376–387. doi:10.1016/j.jmatprotec.2007.11.194 CrossRefGoogle Scholar
  21. 21.
    Singh H, Khanna R (2011) Parametric optimization of cryogenic-treated D-3 for cutting rate in wire electrical discharge machining. J Eng Technol 1:59–64. doi:10.4103/0976-8580.86633 CrossRefGoogle Scholar
  22. 22.
    Yang RT, Tzeng CJ, Yang YK, Hsieh MH (2011) Optimization of wire electric discharge machining parameters for cutting tungsten. Int J Adv Manuf Technol. doi:10.1007/s00170-011-3576-z
  23. 23.
    Nihat T, Can C (2003) An investigation on wire wear in WEDM. J Mater Process Technol 134:273–278CrossRefGoogle Scholar
  24. 24.
    Hewidy MS, El-Taweel TA, El-Saft MF (2005) Modeling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. J Mater Process Technol 169:328–336CrossRefGoogle Scholar
  25. 25.
    Scott MF, Kao C-C, Albert SJ, Jun Q (2005) Investigation of wire electric discharge machining of thin cross-sections and complaint mechanisms. Int J Mach Tools Manuf 45:1717–1725CrossRefGoogle Scholar
  26. 26.
    Anish K, Vinod K, Jatinder K (2012) An Investigation into machining characteristics of commercially pure titanium (Grade-2) using CNC WEDM. Appl Mech Mater 159:56–68. doi:10.4028/www.scientific.net/AMM.159.56 CrossRefGoogle Scholar
  27. 27.
    Probir S, Abhijit S, Surjya PK (2008) Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite. Int J Adv Manuf Technol 39:74–84. doi:10.1007/s00170-007-1200-z CrossRefGoogle Scholar
  28. 28.
    Biing YH, Hsien TC, Fuang HY, Long LC (2005) Examination of wire electric discharge machining of Al2O3p/6061Al composites. Int J Mach Tools Manuf 45:251–259CrossRefGoogle Scholar
  29. 29.
    Ranganath BJ, Prakash CPS (2005) Wire failure analysis in the WEDM process. Manuf Technol Toda 19–24Google Scholar
  30. 30.
    Ramakrishnan R, Karunamoorthy L (2004) Surface roughness model for CNC wire electro discharge machining. Manuf Technol Toda 8–11Google Scholar
  31. 31.
    Sarkar S, Sekh M, Mitra S, Bhattacharyya B (2011) A novel method of determination of wire lag for enhanced profile accuracy in WEDM. Precis Eng 35:339–347. doi:10.1016/j.precisioneng.2011.01.001 CrossRefGoogle Scholar
  32. 32.
    Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219Google Scholar
  33. 33.
    Montgomery DC (1997) Design and analysis of experiments, 4th edn. Wiley, New YorkMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringM. M. University, MullanaAmbalaIndia
  2. 2.Department of Mechanical EngineeringThapar UniversityPatialaIndia
  3. 3.Department of Mechanical EngineeringN.I.T., KurukshetraKurukshetraIndia

Personalised recommendations