Advertisement

The influence of laser assistance on the machinability of the titanium alloy Ti555-3

  • T. Braham-Bouchnak
  • G. Germain
  • A. Morel
  • J. L. Lebrun
ORIGINAL ARTICLE

Abstract

The Ti533-3 alloy is a new titanium alloy which is starting to see increased use in the aeronautical domain to improve the durability of components and to optimize the weight/resistance ratio. This alloy is characterized by greater resistance compared to the more commonly used titanium alloys such as Ti6Al4V. However, a disadvantage of the Ti533-3 alloy is that it is very difficult to machine. In this work, the use of laser-assisted machining has been tested to improve chip formation by a thermal softening phenomenon and to improve the machining productivity of the alloy. A parametric investigation of laser assistance on the machinability of the Ti555-3 titanium alloy shows that: (1) the cutting forces can be greatly decreased if the surface temperature is high; (2) the thermal gradient induced by laser heating modifies the surface integrity in terms of strain hardening and residual stresses in the workpiece; and (3) the chip formation mechanisms are also changed, by increasing the sawteeth frequency when using laser assistance.

Keywords

Laser-assisted machining Machinability Titanium alloys Ti555-3 Surface integrity Cutting force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrazola P, Garay A, Iriarte L, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209(5):2223–2230. doi: 10.1016/j.jmatprotec.2008.06.020 CrossRefGoogle Scholar
  2. 2.
    López De Lacalle LN, Pérez-Bilbatua J, Sánchez JA, Llorente JI, Gutiérrez A, Albóniga J (2000) Using high pressure coolant in the drilling and turning of low machinability alloys. Int J Adv Manuf Technol 16(2):85–91CrossRefGoogle Scholar
  3. 3.
    Hong SY, Markus I, Jeong W (2001) New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4 V. Int J Mach Tools Manuf 41(15):2245–2260. doi: 10.1016/S0890-6955(01)00041-4 CrossRefGoogle Scholar
  4. 4.
    Baili M, Wagner V, Dessein G, Sallaberry J, Lallement D (2011) An experimental investigation of hot machining with induction to improve Ti-5553 machinability. Appl Mech Mater 62:67–76. doi: 10.4028/www.scientific.net/AMM.62.67 CrossRefGoogle Scholar
  5. 5.
    Sun S, Brandt M, Dargusch MS (2010) The effect of a laser beam on chip formation during machining of Ti6Al4V alloy. Metall Mat Trans A Phys Metall Mat Sci 41(6):1573–1581CrossRefGoogle Scholar
  6. 6.
    Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274. doi: 10.1016/S0924-0136(96)00030-1 CrossRefGoogle Scholar
  7. 7.
    Sun S, Brandt M, Dargusch MS (2010) Thermally enhanced machining of hard-to-machine materials—a review. Int J Mach Tools Manuf 50(8):663–680CrossRefGoogle Scholar
  8. 8.
    Ezugwu EO, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134(2):233–253. doi: 10.1016/S0924-0136(02)01042-7 CrossRefGoogle Scholar
  9. 9.
    Wagner V, Baili M, Dessein G, Lallement D (2011) Experimental study of coated carbide tools behaviour: application for Ti-5-5-5-3 turning. Int J Mach Mach Mater 9(3–4):233–248Google Scholar
  10. 10.
    Braham-Bouchnak T (2010) Etude du comportement en sollicitations extrêmes et de l'usinabilité d'un nouvel alliage de titane aéronautique: le Ti555-3. PhD Thesis, Arts et Métiers-ParisTech. http://pastel.archives-ouvertes.fr/pastel-00560093
  11. 11.
    Germain G, Dal Santo P, Lebrun JL (2011) Comprehension of chip formation in laser assisted machining. Int J Mach Tools Manuf 51(3):230–238. doi: 10.1016/j.ijmachtools.2010.11.006 CrossRefGoogle Scholar
  12. 12.
    Leshock CE, Kim J, Shin YC (2001) Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int J Mach Tools Manuf 41(6):877–897. doi: 10.1016/S0890-6955(00)00106-1 CrossRefGoogle Scholar
  13. 13.
    López De Lacalle LN, Sánchez JA, Lamikiz A, Celaya A (2004) Plasma assisted milling of heat-resistant superalloys. J Manuf Sci Eng Trans ASME 126(2):274–285CrossRefGoogle Scholar
  14. 14.
    Germain G, Morel F, Lebrun J, Morel A (2007) Machinability and surface integrity for a bearing steel and a titanium alloy in laser assisted machining (optimisation on LAM on two materials). Lasers Eng 17(5–6):329–344Google Scholar
  15. 15.
    François M, Sprauel JM, Déhan CF, James MR, Convert F, Lu J, Lebrun JL, Ji N, Hendrics RW (1996) X-ray diffraction method. Handbook of measurement of residual stresses, pp 71–131Google Scholar
  16. 16.
    AFNOR Norm NF E66-520 (2008) Working zones of cutting tools—couple tool-material, part 1 to 8Google Scholar
  17. 17.
    Arrazola PJ, Villar A, Ugarte D, Marya S (2007) Serrated chip prediction in finite element modeling of the chip formation process. Mach Sci Technol 11(3):367–390. doi: 10.1080/10910340701539882 Google Scholar
  18. 18.
    Germain G (2006) Contribution à l'optimisation du procédé d'usinage assisté laser. Ph D Thesis, ENSAM. http://pastel.archives-ouvertes.fr/pastel-00002127
  19. 19.
    Lesourd B (1996) Etude et modélisation des mécanismes de formation de bandes de cisaillement intense en coupe des métaux. Application au tournage assisté laser de l’alliage de Titane TA6V. PhD Thesis, ED 82–174, Ecole Centrale de NantesGoogle Scholar
  20. 20.
    Rajagopal S, Plankenhorn DJ, Hill VL (1982) Machining aerospace alloys with the aid of a 15 kW laser. J Appl Metalwork 2(3):170–174CrossRefGoogle Scholar
  21. 21.
    Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti–6Al–4 V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(2):174–182. doi: 10.1016/j.ijmachtools.2009.10.013 CrossRefGoogle Scholar
  22. 22.
    Ramesh A, Melkote SN, Allard LF, Riester L, Watkins TR (2005) Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng, A 390(1–2):88–97CrossRefGoogle Scholar
  23. 23.
    Habak M, Lebrun J-L, Morel A (2007) A study of the influence of the metallurgical state on shear band and white layer generation in 100Cr6 steel: application to machining. AIP Conference Proceedings 907:691–696CrossRefGoogle Scholar
  24. 24.
    Dogra M, Sharma VS, Sachdeva A, Suri NM, Dhiman S (2012) Surface integrity a key issue in hard turning—a review. Int J Mach Mach Mater 12(1–2):88–116Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • T. Braham-Bouchnak
    • 1
  • G. Germain
    • 1
  • A. Morel
    • 1
  • J. L. Lebrun
    • 2
  1. 1.Arts et Métiers ParisTechLAMPA-EA1427AngersFrance
  2. 2.ESTP—École Spéciale des Travaux Publics du bâtiment et de l’industrieCachan CedexFrance

Personalised recommendations