Advertisement

Optimization of shape rolling sequences by integrated artificial intelligent techniques

  • Francesco Lambiase
ORIGINAL ARTICLE

Abstract

The present work introduces an expert system that automatically selects and designs rolling sequences for the production of square and round wires. The design strategy is aimed at reducing the overall number of passes assuming a series of process constraints, e.g., available roll cage power and torque, rolls groove filling behaviors, etc. The method is carried out into two steps: first a genetic algorithm is used to select the proper rolling sequence allowing to achieve a desired finished product; then, an optimization roll pass design tool is utilized for proper design of roll passes. Indeed, an artificial neural network (ANN) is utilized to predict the main geometrical characteristics of the rolled semi-finished product and technological requirements. The ANN was trained with a non-linear finite element (FE) model. The proposed methodology was applied to some industrial cases to show the validity of the proposed approach in terms of reduction of number of passes and search robustness.

Keywords

ANN FEM analysis Roll pass design Shape rolling Rod rolling Process simulation Genetic algorithm Process planning Hybrid design Process optimization Calibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldunin AV (2008) Optimizing hot strip rolling in terms of the metal structure and plasticity. Steel Transl 38(5):362–365CrossRefGoogle Scholar
  2. 2.
    Bontcheva N, Petzov G (2005) Total simulation model of the thermo-mechanical process in shape rolling of steel rods. Comput Mater Sci 34(4):377–388CrossRefGoogle Scholar
  3. 3.
    Kim S, Im Y (2002) Three-dimensional finite element analysis of non-isothermal shape rolling. J Mater Process Technol 127:57–63CrossRefGoogle Scholar
  4. 4.
    Downes A, Hartley P (2006) Using an artificial neural network to assist roll design in cold roll-forming processes. J Mater Process Technol 177(1–3):319–322CrossRefGoogle Scholar
  5. 5.
    Gudur P, Dixit U (2008) A neural network-assisted finite element analysis of cold flat rolling. Eng Appl Artif Intell 21(1):43–52CrossRefGoogle Scholar
  6. 6.
    Kim S-H, Im Y-T (1999) A knowledge-based expert system for roll pass and profile design for shape rolling of round and square bars. J Mater Process Technol 89–90:145–151CrossRefGoogle Scholar
  7. 7.
    Kwon H-C, Im Y-T (2002) Interactive computer aided design system for roll pass and profile design in bar rolling. J Mater Process Technol 123:399–405CrossRefGoogle Scholar
  8. 8.
    Lambiase F, Langella A (2009) Automated procedure for roll pass design. J Mater Eng Perform 18(3):263–272CrossRefGoogle Scholar
  9. 9.
    Shen X, Liu J, Wang X, Huang C (2003) Development of an applied roll forming pass design expert system based on the shape element idea. J Mater Process Technol 140(1–3):505–508CrossRefGoogle Scholar
  10. 10.
    Sikdar S, Kumari S (2008) Neural network model of the profile of hot-rolled strip. Int J Adv Manuf Technol 42(5–6):450–462Google Scholar
  11. 11.
    Gudur PP, Dixit US (2008) An application of fuzzy inference for studying the dependency of roll force and roll torque on process variables in cold flat rolling. Int J Adv Manuf Technol 42(1–2):41–52Google Scholar
  12. 12.
    Yadollahpour MR, Bijari M, Kavosh S, Mahnam M (2009) Guided local search algorithm for hot strip mill scheduling problem with considering hot charge rolling. Int J Adv Manuf Technol 45(11–12):1215–1231CrossRefGoogle Scholar
  13. 13.
    Wang X, Tang L (2007) Integration of batching and scheduling for hot rolling production in the steel industry. Int J Adv Manuf Technol 36(5–6):431–441Google Scholar
  14. 14.
    Jia S, Zhu J, Yang G, Yi J, Du B (2011) A decomposition-based hierarchical optimization algorithm for hot rolling batch scheduling problem. Int J Adv Manuf Technol 61(5–8):487–501Google Scholar
  15. 15.
    Oduguwa V, Roy R (2006) A review of rolling system design optimisation. Int J Mach Tool Manuf 46(7–8):912–928CrossRefGoogle Scholar
  16. 16.
    Siebel E (1925) Kraft und materialflub bei der bildsamen formanderung. Stahl Eisen 45(37):1563Google Scholar
  17. 17.
    Ekelund S (1933) Analysis of factors influencing rolling pressure and power consumption in the hot rolling of steel, steel 1933, nos. 8–14 (Translated from Jerkontorets Ann. Feb. 1927, by B. Blomquist). s.n.Google Scholar
  18. 18.
    Orowan E (1943) The calculation of roll pressure in hot and cold flat rolling. In: Proceedings of the Institution of Mechanical Engineers. pp 140–167. doi: 10.1243/PIME_PROC_1943_150_025_02
  19. 19.
    Sims RB (1954) The calculation of roll force and torque in hot rolling mills. In: Proceedings of the Institution of Mechanical Engineers. pp 191–219. doi: 10.1243/PIME_PROC_1954_168_023_02
  20. 20.
    Abrinia K, Mirnia MJ (2009) A new generalized upper-bound solution for the ECAE process. Int J Adv Manuf Technol 46(1–4):411–421Google Scholar
  21. 21.
    Abrinia K, Fazlirad A (2009) Three-dimensional analysis of shape rolling using a generalized upper bound approach. J Mater Process Technol 209(7):3264–3277CrossRefGoogle Scholar
  22. 22.
    Abrinia K, Fazlirad A (2009) Investigation of single pass shape rolling using an upper bound method. J Mater Eng Perform 19(4):541–552CrossRefGoogle Scholar
  23. 23.
    Minutolo FC, Durante M, Lambiase F, Langella A (2006) Dimensional analysis of a new type of groove for steel rebar rolling. J Mater Process Technol 175(1–3):69–76CrossRefGoogle Scholar
  24. 24.
    Chenot JL, Montmitonnet P, Buessler P, Fau F (1991) Finite element computation of spread in hot flat and shape rolling with a steady state approach. Eng Comput 8(3):245–255CrossRefGoogle Scholar
  25. 25.
    Mori K, Osakada K (1990) Finite element simulation of three-dimensional deformation in shape rolling. Int J Numer Methods Eng 30(8):1431–1440CrossRefGoogle Scholar
  26. 26.
    Raj KH, Sharma RS, Srivastava S, Patvardhan C (2000) Modeling of manufacturing processes with ANNs for intelligent manufacturing. Int J Mach Tool Manuf 40:851–868CrossRefGoogle Scholar
  27. 27.
    Kim DJ, Kim BM (2000) Application of neural network and FEM for metal forming processes. Int J Mach Tool Manuf 40:911–925CrossRefGoogle Scholar
  28. 28.
    Roy S, Ghosh S, Shivpuri R (1996) Optimal design of process variables in multi-pass wire drawing by genetic algorithms. J Manuf Sci Eng 118:244–253Google Scholar
  29. 29.
    Huang B, Xing K, Abhary K, Spuzic S (2012) Development of energy-saving optimization for the oval-edging oval pass design using genetic algorithm. Int J Adv Manuf Technol 61:423–429CrossRefGoogle Scholar
  30. 30.
    Huang B, Xing K, Abhary K, Spuzic S (2012) Optimization of oval–round pass design using genetic algorithm. Robot Comput-Integr Manuf 28:493–499CrossRefGoogle Scholar
  31. 31.
    Nolle L, Armstrong DA, Ware JA, Biegler-Konig F (1997) Optimization of roll profiles in the hot rolling of wide steel strip. Genetic Algorithms in Engineering Systems: Innovations and Applications: 133–138Google Scholar
  32. 32.
    Perotti G, Kapai N (1990) Roll pass design for round bars. CIRP Ann Manuf Technol 39(1):283–286CrossRefGoogle Scholar
  33. 33.
    Osakada K, Yang GB, Nakamura T, Mori K (1990) Expert system for cold-forging process based on FEM simulation. CIRP Ann Manuf Technol 39(1):249–252CrossRefGoogle Scholar
  34. 34.
    Minutolo FC, Durante M, Lambiase F, Langella (2006) A hybrid neural network model for the evaluation of the free surface of rolled bar. In: Intelligent Computation in Manufacturing EngineeringGoogle Scholar
  35. 35.
    Capece Minutolo F, Durante M, Lambiase F, Langella A (2005) Dimensional analysis in steel rod rolling for different types of grooves. J Mater Eng Perform 14(3):373–377CrossRefGoogle Scholar
  36. 36.
    Lee Y, Kim YH (2001) Approximate analysis of roll force in a round–oval–round pass rolling sequence. J Mater Process Technol 113:124–130CrossRefGoogle Scholar
  37. 37.
    Kennedy KF (1986) A method for metal deformation and stress analysis in rolling. Dissertation, Ohio State UniversityGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Mechanical Energy and Management EngineeringUniversity of L’AquilaMonteluco di RoioItaly

Personalised recommendations