A review on the state-of-the-art microforming technologies

  • M. W. FuEmail author
  • W. L. Chan


Product miniaturization is an emerging trend for facilitating product usage, enabling unique product functions to be implemented in micro-scaled geometries and features, and further reducing product weight and volume. Recently, a demand for microparts increased significantly in many industry clusters. Development of the advanced micromanufacturing technologies for fabrication of such microparts has thus become a critical issue. Microforming, which offers attractive characteristics including high productivity, low cost and good quality of the formed parts, provides a promising approach to fabricating metallic microparts. In the last two decades, a lot of effort has been made to the researches on size effect related deformation behaviors in microforming process and the development of the process. Having a panorama of these researches is necessary to support micropart design and development via microforming, and further advance this micromanufacturing process. In this paper, an intensive review on the latest development of microforming technologies is presented. First of all, the paper is focused on the review of the size effect-affected deformation behaviors and the mechanisms of the changes of flow stress, flow behavior, fracture behavior, elastic recovery, tooling–workpiece interfacial friction and the surface finish of the formed parts. The state-of-the-art microforming processes, including micro deep drawing, microembossing, micropunching, microcoining, microextrusion, microheading, and micro progressive forming are then presented. Finally, some research issues from the implementation of mass production perspective are also discussed.


Microforming process Size effect Deformation behavior Micro deformation mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheng Y, Shew BY, Lin CY, Wei DH, Chyu MK (1999) Ultra-deep LIGA process. J Micromech Microeng 9(1):58–63CrossRefGoogle Scholar
  2. 2.
    Yang H, Pan CT, Chou MC (2001) Ultra-fine machining tool/molds by LIGA technology. J Micromech Microeng 11(2):94–99CrossRefGoogle Scholar
  3. 3.
    Masuzawa T State of the art of micromachining (2000) 50th General Assembly of CIRP. Hallwag, Sydney, Australia, pp 473–488Google Scholar
  4. 4.
    Giboz J, Copponnex T, Mele P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17(6):R96–R109. doi: 10.1088/0960-1317/17/6/R02 CrossRefGoogle Scholar
  5. 5.
    Heckele M, Schomburg WK (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14(3):R1–R14CrossRefGoogle Scholar
  6. 6.
    Giboz J, Copponnex T, Mele P (2009) Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding. J Micromech Microeng 19 (2). doi: 10.1088/0960-1317/19/2/025023
  7. 7.
    Piotter V, Benzler T, Gietzelt T, Ruprecht R, Hausselt J (2000) Micro powder injection molding. Adv Eng Mater 2(10):639–642CrossRefGoogle Scholar
  8. 8.
    Zauner R (2006) Micro powder injection moulding. Microelectron Eng 83(4–9):1442–1444. doi: 10.1016/j.mee.2006.01.170 CrossRefGoogle Scholar
  9. 9.
    Fu G, Tor S, Loh N, Tay B, Hardt DE (2007) A micro powder injection molding apparatus for high aspect ratio metal micro-structure production. J Micromech Microeng 17(9):1803–1809. doi: 10.1088/0960-1317/17/9/008 CrossRefGoogle Scholar
  10. 10.
    Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming. CIRP Ann Manuf Technol 50(2):445–462CrossRefGoogle Scholar
  11. 11.
    Engel U, Eckstein R (2002) Microforming—from basic research to its realization. J Mater Process Technol 125:35–44CrossRefGoogle Scholar
  12. 12.
    Fu MW, Li H, Lu J, Lu SQ (2009) Numerical study on the deformation behaviors of the flexible die forming by using viscoplastic pressure-carrying medium. Comput Mater Sci 46(4):1058–1068. doi: 10.1016/j.commatsci.2009.05.013 CrossRefGoogle Scholar
  13. 13.
    Fu MW, Lu J, Chan WL (2009) Die fatigue life improvement through the rational design of metal-forming system. J Mater Process Technol 209(2):1074–1084. doi: 10.1016/j.jmatprotec.2008.03.016 CrossRefGoogle Scholar
  14. 14.
    Fu MW, Yong MS, Muramatsu T (2008) Die fatigue life design and assessment via CAE simulation. Int J Adv Manuf Technol 35(9–10):843–851. doi: 10.1007/s00170-006-0762-5 CrossRefGoogle Scholar
  15. 15.
    Fu MW, Yong MS, Tong KK, Danno A (2008) Design solution evaluation for metal forming product development. Int J Adv Manuf Technol 38(3–4):249–257. doi: 10.1007/s00170-007-1091-z CrossRefGoogle Scholar
  16. 16.
    Fu MW, Yong MS, Tong KK, Muramatsu T (2006) A methodology for evaluation of metal forming system design and performance via CAE simulation. Int J Prod Res 44(6):1075–1092. doi: 10.1080/00207540500337643 CrossRefGoogle Scholar
  17. 17.
    Chan WL, Fu MW, Lu J (2010) FE Simulation-based folding defect prediction and avoidance in forging of axially symmetrical flanged components. J. Manuf. Sci. Eng. Trans. ASME 132 (5). doi: 10.1115/1.4002188
  18. 18.
    Chan WL, Fu MW, Lu J, Chan LC (2009) Simulation-enabled study of folding defect formation and avoidance in axisymmetrical flanged components. J Mater Process Technol 209(11):5077–5086. doi: 10.1016/j.jmatprotec.2009.02.005 CrossRefGoogle Scholar
  19. 19.
    Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol 58(2):566–587. doi: 10.1016/j.cirp.2009.09.002 CrossRefGoogle Scholar
  20. 20.
    Messner A, Engel U, Kals R, Vollertsen F (1994) Size effect in the fe-simulation of micro-forming processes. J Mater Process Technol 45(1–4):371–376CrossRefGoogle Scholar
  21. 21.
    Vollertsen F, Hu Z, Niehoff HS, Theiler C (2004) State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol 151(1–3):70–79. doi: 10.1016/j.jmatprotec.2004.04.266 CrossRefGoogle Scholar
  22. 22.
    Baek SW, Oh SI, Rhim SH (2006) Lubrication for micro forming of ultra thin metal foil. CIRP Ann Manuf Technol 55(1):295–298CrossRefGoogle Scholar
  23. 23.
    Engel U (2006) Tribology in microforming. Wear 260(3):265–273. doi: 10.1016/j.wear.2005.04.021 CrossRefGoogle Scholar
  24. 24.
    Vollertsen F, Hu Z (2006) Tribological size effects in sheet metal forming measured by a strip drawing test. CIRP Ann Manuf Technol 55(1):291–294CrossRefGoogle Scholar
  25. 25.
    Peng LF, Lai XM, Lee HJ, Song JH, Ni J (2010) Friction behavior modeling and analysis in micro/meso scale metal forming process. Mater Des 31(4):1953–1961. doi: 10.1016/j.matdes.2009.10.040 CrossRefGoogle Scholar
  26. 26.
    Guo B, Gong F, Wang CJ, Shan DB (2010) Size effect on friction in scaled down strip drawing. J Mater Sci 45(15):4067–4072. doi: 10.1007/s10853-010-4492-6 CrossRefGoogle Scholar
  27. 27.
    Rosochowski A, Presz W, Olejnik L, Richert M (2007) Micro-extrusion of ultra-fine grained aluminium. Int J Adv Manuf Technol 33(1–2):137–146. doi: 10.1007/s00170-007-0955-6 CrossRefGoogle Scholar
  28. 28.
    Siopis MS, Kinsey BL (2010) Experimental investigation of grain and specimen size effects during electrical-assisted forming. J Manuf Sci Eng Trans ASME 132 (2). doi: 10.1115/1.4001039
  29. 29.
    Diehl A, Engel U, Geiger M (2010) Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils. Int J Adv Manuf Technol 47(1–4):53–61. doi: 10.1007/s00170-008-1851-4 CrossRefGoogle Scholar
  30. 30.
    Shan DB, Wang CJ, Guo B, Wang XW (2009) Effect of thickness and grain size on material behavior in micro-bending. Trans Nonferrous Met Soc China 19:S507–S510CrossRefGoogle Scholar
  31. 31.
    Wang CJ, Shan DB, Zhou J, Guo B, Sun LN (2007) Size effects of the cavity dimension on the microforming ability during coining process. J Mater Process Technol 187:256–259. doi: 10.1016/j.jmatprotec.2006.11.055 CrossRefGoogle Scholar
  32. 32.
    Ike H, Plancak M (1998) Coining process as a means of controlling surface microgeometry. J Mater Process Technol 80–1:101–107CrossRefGoogle Scholar
  33. 33.
    Ike H (2003) Surface deformation vs. bulk plastic deformation—a key for microscopic control of surfaces in metal forming. J Mater Process Technol 138(1–3):250–255. doi: 10.1016/S0924-0136(03)00080-3 CrossRefGoogle Scholar
  34. 34.
    Ma X, Lapovok R, Gu C, Molotnikov A, Estrin Y, Pereloma EV, Davies CHJ, Hodgson PD (2009) Deep drawing behaviour of ultrafine grained copper: modelling and experiment. J Mater Sci 44(14):3807–3812. doi: 10.1007/s10853-009-3515-7 CrossRefGoogle Scholar
  35. 35.
    Raulea LV, Goijaerts AM, Govaert LE, Baaijens FPT (2001) Size effects in the processing of thin metal sheets. J Mater Process Technol 115(1):44–48CrossRefGoogle Scholar
  36. 36.
    Egerer E, Engel U (2004) Process characterization and material flow in microforming at elevated temperatures. J Manuf Process 6(1):1–6CrossRefGoogle Scholar
  37. 37.
    Mirzai MA, Manabe KI, Mabuchi T (2008) Deformation characteristics of microtubes in flaring test. J Mater Process Technol 201(1–3):214–219CrossRefGoogle Scholar
  38. 38.
    Joo BY, Oh SI, Son YK (2004) Forming of micro channels with ultra thin metal foils. CIRP Ann Manuf Technol 53(1):243–246CrossRefGoogle Scholar
  39. 39.
    Gau JT, Principe C, Yu M (2007) Springback behavior of brass in micro sheet forming. J Mater Process Technol 191(1–3):7–10CrossRefGoogle Scholar
  40. 40.
    Chen CC, Jiang CP (2011) Grain size effect in the micro-V-bending process of thin metal sheets. Mater Manuf Process 26(1):78–83. doi: 10.1080/10426911003636910 CrossRefGoogle Scholar
  41. 41.
    Fu MH, Chan KC, Lee WB, Chan LK (1997) Springback in the roller forming of integrated circuit leadframes. J Mater Process Technol 66(1–3):107–111CrossRefGoogle Scholar
  42. 42.
    Parasiz SA, Kinsey B, Krishnan N, Cao J, Li M (2007) Investigation of deformation size effects during microextrusion. J Manuf Sci Eng Trans ASME 129(4):690–697CrossRefGoogle Scholar
  43. 43.
    Parasiz SA, VanBenthysen R, Kinsey BL (2010) Deformation size effects due to specimen and grain size in microbending. J Manuf Sci Eng Trans ASME 132 (1):011018. doi: 10.1115/1.4000943
  44. 44.
    Manabe K, Shimizu T, Koyama H, Yang M, Ito K (2008) Validation of FE simulation based on surface roughness model in micro-deep drawing. J Mater Process Technol 204(1–3):89–93CrossRefGoogle Scholar
  45. 45.
    Wang CJ, Guo B, Shan DB (2009) Effect of die cavity dimension on micro U deep drawing behaviour with T2 foil. Trans Nonferrous Met Soc China 19:S790–S794CrossRefGoogle Scholar
  46. 46.
    Geißdörfer S, Engel U, Geiger M (2006) FE-simulation of microforming processes applying a mesoscopic model. Int J Mach Tools Manuf 46(11):1222–1226CrossRefGoogle Scholar
  47. 47.
    Mahabunphachai S, Koc M (2008) Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales. Int J Mach Tools Manuf 48(9):1014–1029. doi: 10.1016/j.ijmachtools.2008.01.006 CrossRefGoogle Scholar
  48. 48.
    Cao J, Krishnan N, Wang Z, Lu HS, Liu WK, Swanson A (2004) Microforming: experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM. J Manuf Sci Eng Trans ASME 126(4):642–652. doi: 10.1115/1.1813468 CrossRefGoogle Scholar
  49. 49.
    Hu Z (2011) Realisation and application of size dependent FEM-simulation for deep drawing of rectangular work pieces. CIRP J Manuf Sci Technol 4(1):90–95CrossRefGoogle Scholar
  50. 50.
    Wang GC, Zheng W, Wu T, Jiang H, Zhao GQ, Wei DB, Jiang ZY (2012) A multi-region model for numerical simulation of micro bulk forming. J Mater Process Technol 212(3):678–684CrossRefGoogle Scholar
  51. 51.
    Geiger M, Geißdörfer S, Engel U (2007) Mesoscopic model: advanced simulation of microforming processes. Prod Eng 1(1):79–84. doi: 10.1007/s11740-007-0034-8 CrossRefGoogle Scholar
  52. 52.
    Jeon J, Bramley AN (2007) A friction model for microforming. Int J Adv Manuf Technol 33(1–2):125–129. doi: 10.1007/s00170-006-0608-1 CrossRefGoogle Scholar
  53. 53.
    Chan WL, Fu MW, Lu J, Liu JG (2010) Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. MaterSci Eng A: Struct 527(24–25):6638–6648CrossRefGoogle Scholar
  54. 54.
    Simons G, Weippert C, Dual J, Villain J (2006) Size effects in tensile testing of thin cold rolled and annealed Cu foils. Mater Sci Eng A: Struct 416(1–2):290–299. doi: 10.1016/j.msea.2005.10.060 CrossRefGoogle Scholar
  55. 55.
    Weiss B, Groger V, Khatibi G, Kotas A, Zimprich P, Stickler R, Zagar B (2002) Characterization of mechanical and thermal properties of thin Cu foils and wires. Sens Actuator A-Phys 99(1–2):172–182CrossRefGoogle Scholar
  56. 56.
    Khatibi G, Betzwar-Kotas A, Groger V, Weiss B (2005) A study of the mechanical and fatigue properties of metallic microwires. Fatigue Fract Eng Mater Struct 28(8):723–733. doi: 10.1111/j.1460-2695.2005.00898.x CrossRefGoogle Scholar
  57. 57.
    Khatibi G, Mingler B, Schafler E, Stickler R, Weiss B (2005) Microcharacterization of thin copper and aluminium bond wires. BHM Berg- und Hüttenmännische Monatshefte 150(5):176–180. doi: 10.1007/bf03165318 CrossRefGoogle Scholar
  58. 58.
    Fu MW, Chan WL (2011) Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater Des 32(10):4738–4746CrossRefGoogle Scholar
  59. 59.
    Ran JQ, Fu MW, Chan WL (2012) The influence of size effect on the ductile fracture in micro-scaled plastic deformation. Int J Plast. In pressGoogle Scholar
  60. 60.
    Eichenhueller B, Egerer E, Engel U (2007) Microforming at elevated temperature—forming and material behaviour. Int J Adv Manuf Technol 33(1–2):119–124. doi: 10.1007/s00170-006-0731-z CrossRefGoogle Scholar
  61. 61.
    Liu JG, Fu MW, Lu J, Chan WL (2011) Influence of size effect on the springback of sheet metal foils in micro-bending. Comput Mater Sci 50(9):2604–2614CrossRefGoogle Scholar
  62. 62.
    Chan WL, Fu MW, Yang B (2012) Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process. Mater Sci Eng A: Struct 534:374–383CrossRefGoogle Scholar
  63. 63.
    Chan WL, Fu MW (2012) Experimental and simulation based study on micro-scaled sheet metal deformation behavior in microembossing process. Mater Sci Eng A: Struct 556:60–67CrossRefGoogle Scholar
  64. 64.
    Chan WL, Fu MW (2012) Experimental studies of plastic deformation behaviors in microheading process. J Mater Process Technol 212(7):1501–1512CrossRefGoogle Scholar
  65. 65.
    Qin Y (2006) Micro-forming and miniature manufacturing systems—development needs and perspectives. J Mater Process Technol 177(1–3):8–18. doi: 10.1016/j.jmatprotec.2006.03.212 CrossRefGoogle Scholar
  66. 66.
    Arentoft M, Eriksen RS, Hansen HN, Paldan NA (2011) Towards the first generation micro bulk forming system. CIRP Ann Manuf Technol 60(1):335–338. doi: 10.1016/j.cirp.2011.03.140 CrossRefGoogle Scholar
  67. 67.
    Qin Y (2010) Micro-manufacturing engineering and technology. 1st edn. William Andrew, Oxford [England]Google Scholar
  68. 68.
    Chan WL, Fu MW (2012) Studies of the interactive effect of specimen and grain sizes on the plastic deformation behavior in microforming. Int J Adv Manuf Technol 62(9):989–1000. doi: 10.1007/s00170-011-3869-2 CrossRefGoogle Scholar
  69. 69.
    Geiger M, Vollertsen F, Kals R (1996) Fundamentals on the manufacturing of sheet metal microparts. CIRP Ann Manuf Technol 45(1):277–282CrossRefGoogle Scholar
  70. 70.
    Geiger M, Meßner A, Engel U (1997) Production of microparts—size effects in bulk metal forming, similarity theory. Prod Eng 4(1):55–58Google Scholar
  71. 71.
    Barbier C, Thibaud S, Richard F, Picart P (2009) Size effects on material behavior in microforming. Int J Mater Form 2:625–628CrossRefGoogle Scholar
  72. 72.
    Raulea LV, Govaert LE, Baaijens FPT (1999) Sixth International Conference on Technology of Plasticity. In: Geiger M (ed) Grain and specimen size effects in processing metal sheets. Springer, Nuremberg, pp 939–944Google Scholar
  73. 73.
    Chen FK, Tsai JW (2006) A study of size effect in micro-forming with micro-hardness tests. J Mater Process Technol 177(1–3):146–149. doi: 10.1016/j.jmatprotec.2006.04.115 MathSciNetCrossRefGoogle Scholar
  74. 74.
    Chan WL, Fu MW, Lu J (2011) The size effect on micro deformation behaviour in micro-scale plastic deformation. Mater Des 32(1):198–206CrossRefGoogle Scholar
  75. 75.
    Vollertsen F, Niehoff HS, Hu Z (2006) State of the art in micro forming. Int J Mach Tools Manuf 46(11):1172–1179CrossRefGoogle Scholar
  76. 76.
    Van Swygenhoven H, Spaczer M, Caro A (1999) Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Mater 47(10):3117–3126CrossRefGoogle Scholar
  77. 77.
    Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29CrossRefGoogle Scholar
  78. 78.
    Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667):561–563CrossRefGoogle Scholar
  79. 79.
    Kim GY, Ni J, Koc M (2007) Modeling of the size effects on the behavior of metals in microscale deformation processes. J Manuf Sci Eng Trans ASME 129(3):470–476. doi: 10.1115/1.2714582 CrossRefGoogle Scholar
  80. 80.
    Hug E, Keller C (2010) Intrinsic effects due to the reduction of thickness on the mechanical behavior of nickel polycrystals. Metall Mater Trans A-Phys Metall Mater Sci 41A(10):2498–2506. doi: 10.1007/s11661-010-0286-3 CrossRefGoogle Scholar
  81. 81.
    Miyazaki S, Shibata K, Fujita H (1979) Effect of specimen thickness on mechanical-properties of polycrystalline aggregates with various grain sizes. Acta Metall 27(5):855–862CrossRefGoogle Scholar
  82. 82.
    Kals R, Pucher HJ, Vollertsen F (1995) In: Hashmi SJ (ed) Effects of specimen size and geometry in metal forming. 2nd International Conference on Advances in Materials and Processing Technologies, Dublin, pp 1288–1297Google Scholar
  83. 83.
    Shen Y, Yu HP, Ruan XY (2006) Discussion and prediction on decreasing flow stress scale effect. Trans Nonferrous Met Soc China 16(1):132–136CrossRefGoogle Scholar
  84. 84.
    Peng LF, Lai XM, Lee HJ, Song JH, Ni J (2009) Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model. Mater Sci Eng A: Struct 526(1–2):93–99. doi: 10.1016/j.msea.2009.06.061 CrossRefGoogle Scholar
  85. 85.
    Peng LF, Liu F, Ni J, Lai XM (2007) Size effects in thin sheet metal forming and its elastic–plastic constitutive model. Mater Des 28(5):1731–1736. doi: 10.1016/j.matdes.2006.02.011 CrossRefGoogle Scholar
  86. 86.
    Lai XM, Peng LF, Hu P, Lan SH, Ni J (2008) Material behavior modelling in micro/meso-scale forming process with considering size/scale effects. Comput Mater Sci 43(4):1003–1009CrossRefGoogle Scholar
  87. 87.
    Chan WL, Fu MW (2011) Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mater Sci Eng A: Struct 528(25–26):7674–7683CrossRefGoogle Scholar
  88. 88.
    Wang S, Zhuang W, Balint D, Lin J (2009) A virtual crystal plasticity simulation tool for micro-forming. Mesomech 1(1):75–78. doi: 10.1016/j.proeng.2009.06.020 Google Scholar
  89. 89.
    Zhuang W, Lin J (2008) An integrated micromechanics modelling approach for micro-forming simulation. Int J Mod Phys B 22(31–32):5907–5912CrossRefGoogle Scholar
  90. 90.
    Zhuang W, Lin J (2009) An integrated micromechanics modeling approach for micro-forming simulation. World Scientific, SingaporeGoogle Scholar
  91. 91.
    Zhuang W, Wang S, Cao J, Lin J, Hartl C (2010) Modelling of localised thinning features in the hydroforming of micro-tubes using the crystal-plasticity FE method. Int J Adv Manuf Technol 47(9–12):859–865. doi: 10.1007/s00170-009-2134-4 CrossRefGoogle Scholar
  92. 92.
    Klein M, Hadrboletz A, Weiss B, Khatibi G (2001) The 'size effect' on the stress–strain, fatigue and fracture properties of thin metallic foils. Mater Sci Eng A: Struct 319:924–928CrossRefGoogle Scholar
  93. 93.
    Hansen N (1977) The effect of grain-size and strain on tensile flow-stress of aluminum at room-temperature. Acta Metall 25(8):863–869CrossRefGoogle Scholar
  94. 94.
    Henning M, Vehoff H (2007) Statistical size effects based on grain size and texture in thin sheets. Mater Sci Eng A: Struct 452:602–613. doi: 10.1016/j.msea.2006.11.113 CrossRefGoogle Scholar
  95. 95.
    Justinger H, Hirt G (2009) Estimation of grain size and grain orientation influence in microforming processes by Taylor factor considerations. J Mater Process Technol 209(4):2111–2121. doi: 10.1016/j.jmatprotec.2008.05.008 CrossRefGoogle Scholar
  96. 96.
    Tiesler N, Engel U, Geiger M Forming of microparts—effects of miniaturization on friction. In: 6th International Conference on Technology of Plasticity, 1999. pp 889–894Google Scholar
  97. 97.
    Tiesler N (2002) Microforming-size effects in friction and their influence on extrusion processes. Wire 52:34–38Google Scholar
  98. 98.
    Deng JH, Fu MW, Chan WL (2011) Size effect on material surface deformation behavior in micro-forming process. Mater Sci Eng A: Struct 528(13–14):4799–4806CrossRefGoogle Scholar
  99. 99.
    Krishnan N, Cao J, Dohda K (2007) Study of the size effects on friction conditions in microextrusion—part I: microextrusion experiments and analysis. J Manuf Sci Eng Trans ASME 129(4):669–676CrossRefGoogle Scholar
  100. 100.
    Geiger M, Messner A, Engel U, Kals R, Vollertsen F Design of micro-forming processes—fundamentals, material data and friction behaviour. In: 9th Inter-national Cold Forging Congress, 1995. pp 155–164Google Scholar
  101. 101.
    Mori LF, Krishnan N, Cao J, Espinosa HD (2007) Study of the size effects and friction conditions in microextrusion—part II: size effect in dynamic friction for brass-steel pairs. J Manuf Sci Eng Trans ASME 129(4):677–689CrossRefGoogle Scholar
  102. 102.
    Chen GN, Shen H, Hu SU, Baudelet B (1990) Roughening of the free surfaces of metallic sheets during stretch forming. Mater Sci Eng A: Struct 128(1):33–38CrossRefGoogle Scholar
  103. 103.
    Chandrasekaran D, Nygards M (2003) A study of the surface deformation behaviour at grain boundaries in an ultra-low-carbon steel. Acta Mater 51(18):5375–5384. doi: 10.1016/S1359-6454(03)00394-X CrossRefGoogle Scholar
  104. 104.
    Bretheau T, Caldemaison D (1981) 2nd Risø International Symposium on Metallurgy and Materials Science. In: Hansen N, Horsewell A, Leffers T, Lilholt H (eds) Test of mechanical interaction models between polycrystal grains by means of local strain measurements. Risø National Laboratory, Denmark, pp 157–161Google Scholar
  105. 105.
    Urie VM, Wain HL (1952) Plastic deformation of coarse-grained aluminum. J Inst Met 81:153–159Google Scholar
  106. 106.
    Barlow CYJ, Bay B, Hansen N (1985) A comparative investigation of surface relief structures and dislocation microstructures in cold-rolled aluminum. Philos Mag A 51(2):253–275Google Scholar
  107. 107.
    Beaudoin AJ, Acharya A, Chen SR, Korzekwa DA, Stout MG (2000) Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals. Acta Mater 48(13):3409–3423CrossRefGoogle Scholar
  108. 108.
    Hurley PJ, Humphreys FJ (2003) The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy. Acta Mater 51(4):1087–1102. doi: 10.1016/S1359-6454(02)00513-X CrossRefGoogle Scholar
  109. 109.
    Wu PD, Lloyd DJ (2004) Analysis of surface roughening in AA6111 automotive sheet. Acta Mater 52(7):1785–1798. doi: 10.1016/j.actamat.2003.12.039 CrossRefGoogle Scholar
  110. 110.
    Wilson DV, Roberts WT, Rodrigues PMB (1981) Effects of grain anisotropy on limit strains in biaxial stretching. 2. Sheets of cubic metals and alloys with well-developed preferred orientations. Metall Trans A 12(9):1603–1611CrossRefGoogle Scholar
  111. 111.
    Osakada K, Oyane M (1971) On the roughening of free surface in deformation processes. Bulletin of JSME 14(68):171–177CrossRefGoogle Scholar
  112. 112.
    Hu Z, Schubnov A, Vollertsen F (2012) Tribological behaviour of DLC-films and their application in micro deep drawing. J Mater Process Technol 212(3):647–652CrossRefGoogle Scholar
  113. 113.
    Gong F, Guo B, Wang C, Shan D (2010) Effects of lubrication conditions on micro deep drawing. Microsyst Technol 16(10):1741–1747. doi: 10.1007/s00542-010-1108-7 CrossRefGoogle Scholar
  114. 114.
    Saotome Y, Yasuda K, Kaga H (2001) Microdeep drawability of very thin sheet steels. J Mater Process Technol 113(1–3):641–647CrossRefGoogle Scholar
  115. 115.
    Vollertsen F, Hu Z (2010) Analysis of punch velocity dependent process window in micro deep drawing. Prod Eng 4(6):553–559. doi: 10.1007/s11740-010-0241-6 CrossRefGoogle Scholar
  116. 116.
    Hu Z, Wielage H, Vollertsen F (2010) Effect of strain rate on the forming limit diagram of thin aluminum foil. International Forum on Micro Manufacturing Gifu, JapanGoogle Scholar
  117. 117.
    Chen CH, Gau JT, Lee RS (2009) An experimental and analytical study on the limit drawing ratio of stainless steel 304 foils for microsheet forming. Mater Manuf Process 24(12):1256–1265. doi: 10.1080/10426910903129786 CrossRefGoogle Scholar
  118. 118.
    Fu MW, Chan WL , Yang B (2011) Study of size effects on material deformation behaviour in micro-deep drawing of copper sheet metal. Steel Res Int (Special Edition):985–990Google Scholar
  119. 119.
    Fu MW, Yang B, Chan WL (2013) Experimental and simulation studies of micro blanking and deep drawing compound process using copper sheet. J Mater Process Technol 213(1):101–110CrossRefGoogle Scholar
  120. 120.
    Dai YZ, Chiang FP (1992) On the mechanism of plastic-deformation induced surface-roughness. J Eng Mater Technol Trans ASME 114(4):432–438CrossRefGoogle Scholar
  121. 121.
    Wilson WRD, Lee WM (2001) Mechanics of surface roughening in metal forming processes. J Manuf Sci Eng Trans ASME 123(2):279–283CrossRefGoogle Scholar
  122. 122.
    Manabe K, Shimizu T, Koyama H (2007) Evaluation of milli-scale cylindrical cup in two-stage deep drawing process. J Mater Process Technol 187:245–249. doi: 10.1016/j.jmatprotec.2006.11.164 CrossRefGoogle Scholar
  123. 123.
    Mahabunphachai S, Cora ON, Koc M (2010) Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates. J Power Sources 195(16):5269–5277. doi: 10.1016/j.jpowsour.2010.03.018 CrossRefGoogle Scholar
  124. 124.
    Turan C, Cora ON, Koc M (2011) Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells. Int J Hydrog Energy 36(19):12370–12380. doi: 10.1016/j.ijhydene.2011.06.091 CrossRefGoogle Scholar
  125. 125.
    Thiruvarudchelvan S, Tan MJ (2004) The drawing of conical cups using an annular urethane pad. J Mater Process Technol 147(2):163–166. doi: 10.1016/j.matprotec.2003.12.011 CrossRefGoogle Scholar
  126. 126.
    Thiruvarudchelvan S, Sritharan T (2003) Properties of hemispherical cups drawn using a flexible tool. J Mater Process Technol 134(3):310–317. doi: 10.1016/S0924-0136(02)01115-9 CrossRefGoogle Scholar
  127. 127.
    Thiruvarudchelvan S (2002) The potential role of flexible tools in metal forming. J Mater Process Technol 122(2–3):293–300CrossRefGoogle Scholar
  128. 128.
    Dirikolu AH, Akdemir E (2004) Computer aided modelling of flexible forming process. J Mater Process Technol 148(3):376–381. doi: 10.1016/j.jmatprotec.2004.02.049 CrossRefGoogle Scholar
  129. 129.
    Ramezani M, Ripin ZM, Ahmad R (2010) Sheet metal forming with the aid of flexible punch, numerical approach and experimental validation. CIRP J Manuf Sci Technol 3(3):196–203CrossRefGoogle Scholar
  130. 130.
    Fu MW, Lu SQ, Huang MH (1996) High-precision sheet-metal workpieces manufactured by flexible-die forming using a viscoplastic pressure-carrying medium. J Mater Process Technol 62(1–3):70–75. doi: 10.1016/S0924-0136(97)80001-T CrossRefGoogle Scholar
  131. 131.
    Fu MW, Huang MH (2001) Process parameters and products quality analysis of flexible-die deep-drawing using a viscoplastic pressure-carrying medium. J Mater Process Technol 115(3):384–390. doi: 10.1016/S0924-0136(01)01012-3 MathSciNetCrossRefGoogle Scholar
  132. 132.
    Liu YX, Hua L (2010) Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming. J Power Sources 195(11):3529–3535. doi: 10.1016/j.jpowsour.2009.12.046 CrossRefGoogle Scholar
  133. 133.
    Liu YX, Hua L, Lan JA, Wei X (2010) Studies of the deformation styles of the rubber-pad forming process used for manufacturing metallic bipolar plates. J Power Sources 195(24):8177–8184. doi: 10.1016/j.jpowsour.2010.06.078 CrossRefGoogle Scholar
  134. 134.
    Peng LF, Hu P, Lai XM, Mei DQ, Ni J (2009) Investigation of micro/meso sheet soft punch stamping process—simulation and experiments. Mater Des 30(3):783–790. doi: 10.1016/j.matdes.2008.05.074 CrossRefGoogle Scholar
  135. 135.
    Joo BY, Rhim SH, Oh SI (2005) Micro-hole fabrication by mechanical punching process. J Mater Process Technol 170(3):593–601. doi: 10.1016/j.jmatprotec.2005.06.038 CrossRefGoogle Scholar
  136. 136.
    Kals TA, Eckstein R (2000) Miniaturization in sheet metal working. J Mater Process Technol 103(1):95–101CrossRefGoogle Scholar
  137. 137.
    Joo BY, Oh SI, Jeon BH (2001) Development of micro punching system. CIRP Ann Manuf Technol 50(1):191–194CrossRefGoogle Scholar
  138. 138.
    Rhim SH, Son YK, Oh SI (2005) Punching of ultra small size hole array. CIRP Ann Manuf Technol 54(1):261–264CrossRefGoogle Scholar
  139. 139.
    Kim GY, Koc M, Ni J (2008) Experimental and numerical investigations on microcoining of stainless steel 304. J Manuf Sci Eng Trans ASME 130 (4):041017. doi: 10.1115/1.2953235
  140. 140.
    Kim G-Y, Koc M, Ni J (2006) Investigation on coining of micro-features using pure copper. ASME Conference Proceedings 47624:277–283Google Scholar
  141. 141.
    Kalpakjian S, Schmid SR (2003) Manufacturing processes for engineering materials, 4th edn. Prentice Hall, Upper Saddle River, N.JGoogle Scholar
  142. 142.
    Takatsuji N, Hosokawa S, Dohda K, Makino T (2010) Influence of friction behavior on forming of micro-parts by forward–backward extrusion of 6063 aluminum alloy. International Forum on Micro Manufacturing Gifu, JapanGoogle Scholar
  143. 143.
    Nakamura T, Bay N, Zhang ZL (1997) FEM simulation of friction testing method based on combined forward rod–backward can extrusion. J Tribol Trans ASME 119(3):501–506CrossRefGoogle Scholar
  144. 144.
    Chan WL, Fu MW, Lu J (2011) Experimental and simulation study of deformation behavior in micro-compound extrusion process. Mater Des 32(2):525–534. doi: 10.1016/j.matdes.2010.08.032 CrossRefGoogle Scholar
  145. 145.
    Chan WL, Fu MW, Yang B (2011) Study of size effect in micro-extrusion process of pure copper. Mater Des 32(7):3772–3782CrossRefGoogle Scholar
  146. 146.
    Bakhshi-Koybari M (2002) A theoretical and experimental study of friction in metal forming by the use of the forward extrusion process. J Mater Process Technol 125:369–374CrossRefGoogle Scholar
  147. 147.
    Wagener HW, Wolf J (1994) Coefficient of friction in cold-extrusion. J Mater Process Technol 44(3–4):283–291CrossRefGoogle Scholar
  148. 148.
    Depierre V (1970) Experimental measurement of forces during extrusion and correlation with theory. J Lub Technol 92(3):398–405CrossRefGoogle Scholar
  149. 149.
    Zhang Q, Arentoft M, Bruschi S, Dubar L, Felder E (2008) Measurement of friction in a cold extrusion operation: study by numerical simulation of four friction tests. Int J Mater Form 1:1267–1270. doi: 10.1007/s12289-008-0133-x CrossRefGoogle Scholar
  150. 150.
    ASM International. Handbook Committee (1990) ASM handbook, 10th edn. ASM International, Materials Park, OHGoogle Scholar
  151. 151.
    Schrader T, Shirgaokar M, Altan T (2007) A critical evaluation of the double cup extrusion test for selection of cold forging lubricants. J Mater Process Technol 189(1–3):36–44. doi: 10.1016/j.jmatprotec.2006.11.229 CrossRefGoogle Scholar
  152. 152.
    Chinesta F, Cueto E, Engel U, Rosochowski A, Geißdörfer S, Olejnik L (2007) Microforming and nanomaterials. Advances in Material Forming. Springer, Paris, pp 99–124. doi: 10.1007/978-2-287-72143-4_7 Google Scholar
  153. 153.
    Fu MW, Tham YW, Hng HH, Lim KB (2009) The grain refinement of Al-6061 via ECAE processing: deformation behavior, microstructure and property. Mater Sci Eng A: Struct 526(1–2):84–92. doi: 10.1016/j.msea.2009.08.021 CrossRefGoogle Scholar
  154. 154.
    Kim WJ, Sa YK (2006) Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scripta Mater 54(7):1391–1395CrossRefGoogle Scholar
  155. 155.
    Eichenhüller B, Engel U, Geißdörfer S (2008) Process parameter interaction in microforming. Int J Mater Form 1:451–454. doi: 10.1007/s12289-008-0092-2 CrossRefGoogle Scholar
  156. 156.
    Jimma T, Kasuga Y, Iwaki N, Miyazawa O, Mori E, Ito K, Hatano H (1998) An application of ultrasonic vibration to the deep drawing process. J Mater Process Technol 80–1:406–412CrossRefGoogle Scholar
  157. 157.
    Siegert K, Ulmer J (2001) Superimposing ultrasonic waves on the dies in tube and wire drawing. J Eng Mater Technol Trans ASME 123(4):517–523CrossRefGoogle Scholar
  158. 158.
    Murakawa M, Jin M (2001) The utility of radially and ultrasonically vibrated dies in the wire drawing process. J Mater Process Technol 113(1–3):81–86CrossRefGoogle Scholar
  159. 159.
    Mousavi SAAA, Feizi H, Madoliat R (2007) Investigations on the effects of ultrasonic vibrations in the extrusion process. J Mater Process Technol 187:657–661. doi: 10.1016/j.jmatprotec.2006.11.168 CrossRefGoogle Scholar
  160. 160.
    Hung JC, Tsai YC, Hung CH (2007) Frictional effect of ultrasonic-vibration on upsetting. Ultrasonics 46(3):277–284. doi: 10.1016/j.ultras.2007.03.003 CrossRefGoogle Scholar
  161. 161.
    Bunget C, Ngaile G (2011) Influence of ultrasonic vibration on micro-extrusion. Ultrasonics 51(5):606–616. doi: 10.1016/j.ultras.2011.01.001 CrossRefGoogle Scholar
  162. 162.
    Yao Z, Kim G-Y, Faidley L, Zou Q, Mei D, Chen Z (2012) Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting. J Mater Process Technol 212(3):640–646CrossRefGoogle Scholar
  163. 163.
    Chan WL, Fu MW (2013) Meso-scaled progressive forming of bulk cylindrical and flanged parts using sheet metal. Mater Des 43:249–257CrossRefGoogle Scholar
  164. 164.
    Hirota K (2007) Fabrication of micro-billet by sheet extrusion. J Mater Process Technol 191(1–3):283–287. doi: 10.1016/j.jmatprotec.2007.03.024 CrossRefGoogle Scholar
  165. 165.
    Atsushi D, Wong CC, Lim SCV, Aue-u-lan Y, Chew MQ (2010) Capability development of progressive extrusion forming of hollow miniature/micro pin form sheet. International Forum on Micro Manufacturing Gifu, Japan, pp 241–246Google Scholar
  166. 166.
    Lim SCV, Atsushi D, Chew MQ (2010) Effect of punch size and annealing on the progressive forming of micro-pin from a sheet metal. International Forum on Micro Manufacturing Gifu, Japan, pp 11–14Google Scholar
  167. 167.
    Hambli R (2002) Design of experiment based analysis for sheet metal blanking processes optimisation. Int J Adv Manuf Technol 19(6):403–410CrossRefGoogle Scholar
  168. 168.
    Taupin E, Breitling J, Wu WT, Altan T (1996) Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments. J Mater Process Technol 59(1–2):68–78CrossRefGoogle Scholar
  169. 169.
    Ko DC, Kim BM, Choi JC (1997) Finite-element simulation of the shear process using the element-kill method. J Mater Process Technol 72(1):129–140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityKowloonChina

Personalised recommendations