A review on 3D micro-additive manufacturing technologies

  • Mohammad VaeziEmail author
  • Hermann Seitz
  • Shoufeng Yang


New microproducts need the utilization of a diversity of materials and have complicated three-dimensional (3D) microstructures with high aspect ratios. To date, many micromanufacturing processes have been developed but specific class of such processes are applicable for fabrication of functional and true 3D microcomponents/assemblies. The aptitude to process a broad range of materials and the ability to fabricate functional and geometrically complicated 3D microstructures provides the additive manufacturing (AM) processes some profits over traditional methods, such as lithography-based or micromachining approaches investigated widely in the past. In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-AM systems, 3D direct writing, and hybrid processes, and the key processes have been reviewed comprehensively. Principle and recent progress of each 3D micro-AM process has been described, and the advantages and disadvantages of each process have been presented.


Additive manufacturing (AM) Direct writing (DW) Microelectromechanical systems (MEMS) Rapid micromanufacturing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Accoto D, Carrozza MC, Dario P (2000) Modelling of micropumps using unimorph piezoelectric actuators and ball valves. J Micromech Microeng 10:277–281Google Scholar
  2. 2.
    Adams JJ, DUOSS EB, Malkowski TF, Motala MJ, Ahn BY, Nuzzo RG, Bernhard JT, Lewis JA (2011) Conformal printing of electrically small antennas on three-dimensional surfaces. Adv Mater 23(11)):1335–1340Google Scholar
  3. 3.
    Ainsley C, Reis N, Derby B (2002) Freeform fabrication by controlled droplet deposition of powder filled melts. J Mater Sci 37:3155–3161Google Scholar
  4. 4.
    Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52:635–657Google Scholar
  5. 5.
    Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, Mo XM, Loh HT, Burdet E, Teoh SH (2002) Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 20:35–42Google Scholar
  6. 6.
    Arcaute K, Mann B, Wicker R (2010) Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia 6:1047–1054Google Scholar
  7. 7.
    Barry RA, Shepherd RF, Hanson JN, Nuzzo RG, Wiltzius P, Lewis JA (2009) Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth. Adv Mater 21:2407–2410Google Scholar
  8. 8.
    Barron, JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147Google Scholar
  9. 9.
    Bartolo PJ (2011) Stereolithography: materials, processes and applications. Springer, LondonGoogle Scholar
  10. 10.
    Bartolo PJ, Gaspar J (2008) Metal filled resin for stereolithography metal part. CIRP Ann Manuf Technol 57:235–238Google Scholar
  11. 11.
    Becker EW, Ehrfeld W, Hagmann P, Maner A, Munchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelec Eng 4:35–56Google Scholar
  12. 12.
    Beluze L, Bertsch A, Renaud P (1999) Microstereolithography: a new process to build complex 3D objects. In: SPIE symposium on design, test and microfabrication of MEMs/MOEMs, Paris, FranceGoogle Scholar
  13. 13.
    Bertsch A, Bernhard P, Vogt C, Renaud P (2000) Rapid prototyping of small size objects. Rapid Prototyping J 6:259–266Google Scholar
  14. 14.
    Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001). 3D micromixers—downscaling large-scale industrial static mixers. In: The 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2001), Interlaken, Switzerland. pp. 507–510Google Scholar
  15. 15.
    Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001) Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1:56–60Google Scholar
  16. 16.
    Bertsch A, Jiguet S, Renaud P (2004) Microfabrication of ceramic components by microstereolithography. J Micromech Microeng 14:197–203Google Scholar
  17. 17.
    Bertsch A, Lorenz H, Renaud P (1998). Combining microstereolithography and thick resist UV lithography for 3D microfabrication. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). pp. 18–23.Google Scholar
  18. 18.
    Bertsch A, Lorenz H, Renaud P (1999) 3D microfabrication by combining microstereolithography and thick resist UV lithography. Sensor Actuator Phys 73:14–23Google Scholar
  19. 19.
    Bertsch A, Zissi S, Jezequel JY, Corbel S, Andre JC (1997) Microstereophotolithography using a liquid crystal display as dynamic mask generator. Microsyst Technol 3:42–47Google Scholar
  20. 20.
    Bertsch A, Jezequel YJ, Andre JC (1997) Study of the spatial resolution of a new 3D micro fabrication process; the microstereolithography using a dynamic mask-generator technique. J Photochem Photobiol Chem 107:275–282Google Scholar
  21. 21.
    Bhushan B (2007) Handbook of nanotechnology. Springer, New YorkGoogle Scholar
  22. 22.
    Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041Google Scholar
  23. 23.
    Bredt, J.F., Anderson, T.C., Russell, D.B., 2002. Three dimensional printing materials system. US Patent 6,416,850. US Patent and Trademark Office, Z CorporationGoogle Scholar
  24. 24.
    Brinksmeier E, Riemer O, Stern R (2001). Machining of precision parts and microstructures. In: Proceedings of the 10th International Conference on Precision Engineering (ICPE), Yokohama, Japan, 18–20 July. pp. 3–11Google Scholar
  25. 25.
    Broer DJ, Mol GN, Challa G (1991) In-situ photopolymerization of oriented liquid-crystalline acrylates. Makromol Chem 192:59–74Google Scholar
  26. 26.
    Brousseau EB, Dimov SS, Pham DT (2010) Some recent advances in multi-material micro- and nano-manufacturing. Int J Adv Manuf Technol 47:161–180Google Scholar
  27. 27.
    Butler EJ, Folk C, Cohen A, Vasilyev NV, Chen R, del Nido PJ, Dupont PE (2011). Metal MEMS tools for beating-heart tissue approximation. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, ChinaGoogle Scholar
  28. 28.
    Buyer’s guide, envisionTEC GmbH. Available from
  29. 29.
    Campbell AN, Tanner DM, Soden JM, Stewart DK, Doyle A, Adam E, Gibson M, Abramo M (1997). Electrical and chemical characterization of FIB-deposited insulators. In: Proceedings of the 23 International Symposium on Testing and Failure Analysis. pp. 223–230.Google Scholar
  30. 30.
    Cao W, Miyamoto Y (2006) Freeform fabrication of aluminum parts by direct deposition of molten aluminum. J Mater Process Technol 173:209–212Google Scholar
  31. 31.
    Cappi B, Özkol E, Ebert J, Telle R (2008) Direct inkjet printing of Si3N4: characterization of ink, green bodies and microstructure. J Eur Ceram Soc 28:2625–2628Google Scholar
  32. 32.
    Carreño-Morelli E, Martinerie S, Bidaux JE (2007) Three-dimensional printing of shape memory alloys. Mater Sci Forum 534–536:477–480Google Scholar
  33. 33.
    Carrozza MC, Croce N, Magnani B, Dario P (1995) A piezoelectric-driven stereolithography-fabricated micropump. J Micromech Microeng 5:177–179Google Scholar
  34. 34.
    Cawley JD (1999) Solid freeform fabrication of ceramics. Curr Opin Solid State Mater Sci 4:483–489Google Scholar
  35. 35.
    Cesarano J (1999) A review of robocasting technology. In: Dimos D, Danforth SC, Cima MJ (eds) Solid Freeform and Additive Fabrication. Materials Research Society, WarrendaleGoogle Scholar
  36. 36.
    Charmeux JF, Minev R, Dimov S, Minev E, Su S, Harrysson U (2008). Capability study of the Fcubic direct shell process for casting micro-components. 4M Cross Divisional Report. Cardiff University, CardiffGoogle Scholar
  37. 37.
    Chatwin CR, Farsari M, Huang S, Heywood HI, Birch PM, Young RCD, Richardson JD (1998) UV microstereolithography system that uses spatial light modulator technology. Appl Optic 37:7514–7522Google Scholar
  38. 38.
    Chen RT, Brown ER, Singh RS (2004). A compact 30 GHZ low loss balanced hybrid coupler fabricated using micromachined integrated coax. In: Proceedings 2004 IEEE Radio and Wireless Conference, Atlanta, GAGoogle Scholar
  39. 39.
    Cheng YL, Lin JH, Lai JH, Ke CT, Huang YC (2005). Development of dynamic mask photolithography system. In: Proceedings of the 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan. pp. 467–471Google Scholar
  40. 40.
    Choi JW, Ha YM, Won MH, Choi KH, Lee SH (2005). Fabrication of 3-dimensional microstructures using dynamic imageprojection. In: Proceedings of International Conference on Precision Engineering and Micro/Nano Technology in Asia (ASPEN 2005), Shenzhen, China. pp. 472–476Google Scholar
  41. 41.
    Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications, 3rd edn. World Scientific, SingaporeGoogle Scholar
  42. 42.
    Clare AT, Chalker PR, Davies S, Sutcliffe CJ, Tsopanos S (2008) Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int J Mech Mater Des 4:181–187Google Scholar
  43. 43.
    Cohen A, (2004). Going beyond silicon MEMS with EFAB Technology. White paper. Microfabrica Inc., BurbankGoogle Scholar
  44. 44.
    Cohen A, (2005). EFAB Technology: unlocking the potential of miniaturized medical devices. EVP, Technology and CTO. Microfabrica Inc., BurbankGoogle Scholar
  45. 45.
    Cohen A, Chen, R (2007). Microfabricated tissue removal instruments for minimally-invasive procedures. In: 19th International Conference of the Society for Medical Innovation and Technology, Sendai, JapanGoogle Scholar
  46. 46.
    Cohen A, Chen R, Frodis U, Wu MT, Folk C (2010) Microscale metal additive manufacturing of multi-component medical devices. Rapid Prototyping J 16:209–215Google Scholar
  47. 47.
    Cohen A, Frodis U, Zhang G, (1998). EFAB: batch production of functional, fully-dense metal parts with micron-scale features. In: Solid Freeform Fabrication Symposium Proceedings, The University of Texas, AustinGoogle Scholar
  48. 48.
    Cohen A, Kruglick E (2006) EFAB technology and applications. In: Gad-el-Hak M (ed) The MEMS handbook, vol 2nd. CRC Press, Boca RatonGoogle Scholar
  49. 49.
    Cohen A, Wooden S (2005). Monolithic 3-D microfabrication of mechanisms with multiple independently-moving parts. In: Proceedings of IMECE2005: 2005 ASME International Mechanical Engineering Congress and Exposition, Florida.Google Scholar
  50. 50.
    Cohen A, Zhang G, Tseng F, Frodis U, Mansfeld F, Will P (1999). EFAB: rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS. In: Proceedings of the IEEE International MEMS 99 Conference. pp. 244–251Google Scholar
  51. 51.
    Crivello JV (1999) The discovery and development of onium salt cationic photoinitiators. J Polymer Sci Polymer Chem 37:4241–4254Google Scholar
  52. 52.
    Crocker JE, Harrison S, Sun LLL, Marcus HL (1998) Using SALDVI and SALD with multi-material structures. J Miner Met Mater Soc 50:21–23Google Scholar
  53. 53.
    Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu XL, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54Google Scholar
  54. 54.
    Day D, Gu M (1999) Use of two-photon excitation for erasablerewritable three-dimensional bit optical data storage in a photorefractive polymer. Opt Lett 24:948–950Google Scholar
  55. 55.
    Debaes C, Vervaeke M, Volckaerts B, Van Erps J, Desmet L, Ottevaere H, Vynck P, Gomez V, Hermanne A, Thienpont H (2005) Low-cost micro-optical modules for board level optical interconnections. IEEE LEOS Newsletter 19:12–14Google Scholar
  56. 56.
    Derby B, Reis N (2003) Inkjet printing of highly loaded particulate suspensions. MRS Bull 28:815–818Google Scholar
  57. 57.
    Deubel M, Von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447Google Scholar
  58. 58.
    Deubel M, Wegener M, Linden S, Von Freymann G, John S (2006) 3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing. Optic Lett 31:805–807Google Scholar
  59. 59.
    Dimov, SS, Matthews CW, Glanfield A, Dorrington PA (2006). Roadmapping study in multi-material micro manufacture. In: Proceedings of the Second International Conference on Multi-material Micromanufacture, 4M2006, Grenoble, France, 20–22 September, pp. xi–xxvGoogle Scholar
  60. 60.
    Doraiswamy A, Jin C, Narayan RJ, Mageswaran P, Mente P, Modi R, Auyeung R, Chrisey DB, Ovsianikov A, Chichkov B (2006) Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices. Acta Biomaterialia 2:267–275Google Scholar
  61. 61.
    Dorj B, Park JH, Kim HW (2012) Robocasting chitosan/nanobioactive glass dual-pore structured scaffolds for bone engineering. Mater Lett 73:119–122Google Scholar
  62. 62.
    Dufaud O, Corbel S (2003) Oxygen diffusion in ceramic suspensions for stereolithography. Chem Eng J 92:55–62Google Scholar
  63. 63.
    Duoss EB, Twardowski M, Lewis JA (2007) Sol–gel Inks for Direct-Write Assembly of Functional Oxides. Adv Mater 19(21):3485–3489Google Scholar
  64. 64.
    Duty C, Jean D, Lackey WJ (2001) Laser chemical vapor deposition: materials, modeling, and process control. Int Mater Rev 46:271–287Google Scholar
  65. 65.
    Ebert J, Özkol E, Zeichner A, Uibel K, Weiss O, Koops U, Telle R, Fischer H (2009) Direct inkjet printing of dental prostheses made of zirconia. J Dent Res 88:673–676Google Scholar
  66. 66.
    Ebert R, Regenfuss P, Hartwig L, Klötzer S, Exner H, (2003). Process assembly for μm-scale SLS, reaction sintering, and CVD. In: 4th International Symposium on Laser Precision Microfabrication. Proceedings of SPI vol. 5063, S.183–188Google Scholar
  67. 67.
    Edinger K (2002) Focused ion beam for direct writing. In: Pique A, Chrisey DB (eds) Direct write technologies for rapid prototyping applications. Academic, New York, pp 347–383Google Scholar
  68. 68.
    Edinger K, Melngailis J, Orloff J (1998) Study of precursor gases for focused ion beam insulator deposition. J Vac Sci Tech B 16:3311–3314Google Scholar
  69. 69.
    Ehrfeld W, Schmidt A (1998) Recent developments in deep X-ray lithography. J Vac Sci Technol B 16:3526–34Google Scholar
  70. 70.
    Evans J, Yang S (2009) Solid freeforming and combinatorial research. Tsinghua Sci Technol 14(S1):94–99Google Scholar
  71. 71.
    Exner H, Horn M, Streek A, Hartwig L, Ebert R (2005) First results in laser micro sintering of ceramic materials. European Congress on Advanced Materials and Processes, PragueGoogle Scholar
  72. 72.
    Exner H, Horn M, Streek A, Ullmann F, Hartwig L, Regenfuß P, Ebert R (2008). Laser micro sintering: a new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. In: Virtual and physical prototyping, vol 3. Taylor & Francis, New York. pp. 3–11Google Scholar
  73. 73.
    Exner H, Regenfuss P, Hartwig L, Klötzer S, Ebert R (2003). Selective laser micro sintering with a novel process. In: 4th International Symposium on Laser Precision Microfabrication. Proceedings of SPI, vol. 5063, S.145–151.Google Scholar
  74. 74.
    Farrer RA, LaFratta CN, Li L, Praino J, Naughton MJ, Saleh BEA, Teich MC, Fourkas JT (2006) Selective functionalization of 3-D polymer microstructures. J Am Chem Soc 128:1796–1797Google Scholar
  75. 75.
    Fedorovich NE, Oudshroon MH, Geemen D, Hennink WE, Alblas J, Dhert WJA (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30:344–353Google Scholar
  76. 76.
    Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Opt Express 14:800–809Google Scholar
  77. 77.
    Foulon F, Stuke M (1993) Argon-ion laser direct-write Al deposition from trialkylamine alane precursors. Appl Physic A 56:283–289Google Scholar
  78. 78.
    Freymann GV, Ledermann A, Thiel M, Staude I, Essig S, Busch K, Wegener M (2010) Three-dimensional nanostructures for photonics. Adv Funct Mater 20:1038–1052Google Scholar
  79. 79.
    Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78:249–251Google Scholar
  80. 80.
    Gaspar J, Bartolo PJ, Duarte FM (2008) Cure and rheological analysis of reinforced resins for stereolithography. Mater Sci Forum 587–588:563–567Google Scholar
  81. 81.
    Gebhardt A (2003) Rapid prototyping. Hanser Gardner Publications, Inc., Cincinnati (originally published in German)Google Scholar
  82. 82.
    Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, New YorkGoogle Scholar
  83. 83.
    Gotzen R, Reinhardt A (2008) High volume production by RM: challenges and solutions for small parts and MEMS. International conference on additive technologies. Ptuj, SloveniaGoogle Scholar
  84. 84.
    Greulich M, Greul M, Pintat T (1995) Fast, functional prototypes via multiphase jet solidification. Rapid Prototyping J 1:20–25Google Scholar
  85. 85.
    Grida I, Evans JRG (2003) Extrusion freeforming of ceramics through fine nozzles. J Eur Ceram Soc 23:629–635Google Scholar
  86. 86.
    Guo R, Li Z, Jiang Z, Yuan D, Huang W, Xia A (2005) Log-pile photonic crystal fabricated by two-photon photopolymerization. J Opt A: Pure Appl Opt 7:396–699Google Scholar
  87. 87.
    Guo R, Xiao S, Zhai X, Li J, Xia A, Huang W (2006) Micro lens fabrication by means of femtosecond two photon polymerization. Opt Express 14:810–816Google Scholar
  88. 88.
    Ha YM, Park IB, Kim HC, Lee SH (2010) Three-dimensional microstructure using partitioned cross-sections in projection microstereolithography. Int J Precis Eng Manuf 11:335–340Google Scholar
  89. 89.
    Hadipoespito G, Yang Y, Choi H, Ning G, Li X, (2003). Digital micromirror device based microstereolithography for micro structures of transparent photopolymer and nanocomposites. In: Proceedings of the 14th Solid Freeform Fabrication Symposium, Austin, TX. pp. 13–24Google Scholar
  90. 90.
    Haferkamp H, Ostendorf A, Becker H, Czerner S, Stippler P (2004) Combination of Yb:YAG-disc laser and roll-based powder deposition for the micro-laser sintering. J Mater Process Tech 149:623–626Google Scholar
  91. 91.
    Hasegawa T, Nakashima K, Omatsu F, Ikuta K (2008) Multi-directional micro switching valve chip with rotary mechanism. Sensor Actuator Phys 143:390–398Google Scholar
  92. 92.
    Hatashi T (2000). Direct 3D forming using TFT LCD mask. In: Proceedings of the 8th International Conference on Rapid Prototyping, Tokyo, Japan. pp. 172–177Google Scholar
  93. 93.
    Heller C, Schwentenwein M, Russmueller G, Varga F, Stampfl J, Liska R (2009) Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J Polymer Sci Polymer Chem 47:6941–6954Google Scholar
  94. 94.
    Hill RT, Lyon JL, Allen R, Stevenson KJ, Shear JB (2005) Aqueous microfabrication of bioelectronic architectures. J Am Chem Soc 127:10707–10711Google Scholar
  95. 95.
    Hoffmann P, Melngailis J, Michler J (2000). Focused ion beam induced deposition of gold and rhodium. In: Proceedings of the Materials Research Society Symposium, vol. 624. pp. 171–175Google Scholar
  96. 96.
    Hon KKB, Li L, Hutchings IM (2008) Direct writing technology—advances and developments. CIRP Ann Manuf Technol 57:601–620Google Scholar
  97. 97.
    Huang YM, Jiang CP (2003) Numerical analysis of mask type stereolithography process using dynamic finite element method. Int J Adv Manuf Technol 21:649–655Google Scholar
  98. 98.
    Huang YM, Jeng JY, Jiang, CP, Wang JC (2001). Computer supported force analysis and layer imagine for masked rapid prototyping system. In: Proceedings of the 6th International Conference on Computer Supported Cooperative Work in Design, Ontario, Canada. pp. 562–567Google Scholar
  99. 99.
    Hung-Jen Y, Ching-Shiow T, Shan-Hui H, Ching-Lin T (2009) Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed Microdevices 11:615–624Google Scholar
  100. 100.
    Igaki J, Kometani R, Nakamatsu K, Kanda K, Haruyama Y, Ochiai Y (2006) Three-dimensional rotor fabrication by focused-ion-beam chemical-vapor deposition. Microelectron Eng 83:1221–1226Google Scholar
  101. 101.
    Ikuta K, Hasegawa T, Adachi T (2001). The optimized SMA micropump chip applicable to liquids and gases. In: Thansducers’01 Eurosensors XV Workshop, Munich, GermanyGoogle Scholar
  102. 102.
    Ikuta K, Hasegawa T, Adachi T, Maruo S (2000). Fluid drive chips containing multiple pumps and switching valves for biochemical IC family. In: 13th IEEE International Conference on Microelectro Mechanical Systems (MEMS 2000), Miyazaki, Japan. pp. 739–744Google Scholar
  103. 103.
    Ikuta K, Hirowatari K (1993). Real three-dimensional microfabrication using stereolithography and metal molding. In: Proceedings of the IEEE international Workshop on Microelectromechanical Systems (MEMS ‘93), Fort Lauderdale. pp. 42–47Google Scholar
  104. 104.
    Ikuta K, Maruo S, Kojoma S (1993). New microstereo lithography for freely movable 3D microstructure. In: Proceedings of the IEEE international Workshop on Microelectromechanical Systems (MEMS ‘93), Fort Lauderdale. pp. 290–295Google Scholar
  105. 105.
    Ikuta K, Ogata T, Tsubio M, Kojima S, (1996). Development of mass productive microstereolithography. In: Proceedings of the IEEE international Workshop on Microelectromechanical Systems (MEMS), San Diego. pp. 301–305Google Scholar
  106. 106.
    Ikuta K, Sasaki Y, Maegawa H, Maruo S, (2002). Microultrasonic homogenizer chip made by hybrid microstereolithography. In: Symposium on Micrototal Analysis Systems (MicroTAS’02) Conference. Kluwer, Norwell.Google Scholar
  107. 107.
    Jafari MA, Han W, Mohammadi F (2000) A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping J 6:161–175Google Scholar
  108. 108.
    Jayasinghe SN (2007) Bio-electros prays: The development of a promising tool for regenerative and therapeutic medicine. Biotechnol J 2:934–937Google Scholar
  109. 109.
    Jiang XS, Qi LH, Luo J, Huang H, Zhou JM (2010) Research on accurate droplet generation for micro-droplet deposition manufacture. Int J Adv Manuf Technol 49:535–541Google Scholar
  110. 110.
    Jiguet S, Bertsch A, Renaud P (2002). Microstereolithography and ceramic composite three-dimensional parts. In: Proceedings of the Shaping II conference, Gent, BelgiumGoogle Scholar
  111. 111.
    Johander P, Eberhard W, Necula D, Haasl S, Jung E (2007). Three-dimensional electronics packaging and interconnection 3D PACK. 4M Cross Divisional Report. Cardiff University, Cardiff. pp. 8–22.Google Scholar
  112. 112.
    Johander P, Haasl S, Persson K, Harrysson U (2007). Layer manufacturing as a generic tool for microsystem integration. In: 4M2007 Conference Proceedings, Borovets, Bulgaria.Google Scholar
  113. 113.
    Johander P, Harrysson U, Kaufmann U, Ritzhaupt-Kleissl HJ, (2005). Direct manufacture of ceramic micro components with layered manufacturing methods. In: 4M Conference, Karlsruhe, GermanyGoogle Scholar
  114. 114.
    Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 23:611–620Google Scholar
  115. 115.
    Karam RM, Casler RJ (2003). A new 3D, direct-write, sub-micron microfabrication process that achieves true optical, mechatronic and packaging integration on glass-ceramic substrates. White paper, Invenios, IncGoogle Scholar
  116. 116.
    Kawamoto H (2007). Electronic circuit printing, 3D printing and film formation utilizing electrostatic inkjet technology. In: International Conference on Digital Printing Technologies and Digital Fabrication, Anchorage, Alaska. pp. 961–964Google Scholar
  117. 117.
    Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698Google Scholar
  118. 118.
    Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping J 11:9–17Google Scholar
  119. 119.
    Kim CS, Ahn SH, Jang DY (2012) Review: developments in micro/nanoscale fabrication by focused ion beams. Vacuum 86:1014–1035Google Scholar
  120. 120.
    Kim DS, Lee IH, Kwon TH, Cho DW (2004) A barrier embedded Kenics micromixer. J Micromech Microeng 14:1294–1301Google Scholar
  121. 121.
    Klein F, Richter B, Striebel T, Franz CM, Freymann GV, Wegener M, Bastmeyer M (2011) Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater 23:1341–1345Google Scholar
  122. 122.
    Klein S, Barsella A, Leblond H, Bulou H, Fort A, Andraud C, Lemercier G, Mulatier JC, Dorkenoo K (2005) One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption. Appl Phys Lett 86:211118(1)–211118(3)Google Scholar
  123. 123.
    Klosterman DA, Chartoff RP, Osborne NR, Graves GA, Lightman A, Han GW, Bezeredi A, Rodrigues S, Pak S, Kalmanovich G, Dodin L, Tu S (1998) Direct fabrication of ceramics, CMCs by rapid prototyping. Am Ceram Soc Bull 77:69–74Google Scholar
  124. 124.
    Ko SH, Chung J, Hotz N, Nam KH, Grigoropoulos CP (2010) Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. J Micromech Microeng 20:125010 (7 pp)Google Scholar
  125. 125.
    Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet J, Poulikakos D (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202Google Scholar
  126. 126.
    Kobayashi K, Ikuta K (2005). Development of free surface microstereolithography with ultra high resolution to fabricate hybrid 3-D microdevices. In: IEEE International Symposium on Micro-nano Mechatronics and Human SchienceGoogle Scholar
  127. 127.
    Kometani R, Funabiki R, Hoshino T, Kanda K, Haruyama Y, Kaito T (2006) Cell wall cutting tool and nano-net fabrication by FIB-CVD for subcellular operations and analysis. Microelectron Eng 83:1642–1645Google Scholar
  128. 128.
    Kometani R, Hoshino T, Kondo K, Kanda K, Haruyama Y, Kaito J (2005) Performance of nanomanipulator fabricated on glass capillary by focused ion-beam chemical vapor deposition. J Vac Sci Technol B 23:298–301Google Scholar
  129. 129.
    Kometani R, Morita T, Watanabe K, Hoshino T, Kondo K, Kanda K (2004) Nanomanipulator and actuator fabrication on glass capillary by focused-ion beam-chemical vapor deposition. J Vac Sci Technol B 22:257–263Google Scholar
  130. 130.
    Lai WH, Chen CC (2005) Effect of oxidation on the breakup and monosized droplet generation of the molten metal jet. AtomizSpr 15:81–102MathSciNetGoogle Scholar
  131. 131.
    Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20:49–56Google Scholar
  132. 132.
    Lan PX, Lee JW, Seol YJ, Cho DW (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 20:271–279Google Scholar
  133. 133.
    Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447Google Scholar
  134. 134.
    Landers R, Mühlhaupt R (2000) Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng 282:17–21Google Scholar
  135. 135.
    Lanzetta M, Sachs E (2003) Improved surface finish in 3D printing using bimodal powder distribution. Rapid Prototyping J 9:157–166Google Scholar
  136. 136.
    Lass N, Tropmann A, Ernst A, Zengerle R, Koltay P (2011). Rapid prototyping of 3d microstructures by direct printing of liquid metal at temperatures up to 500°C using the starjet technology. In: 16th Solid-State Sensors, Actuators and Microsystems International Conference (TRANSDUCERS), Beijing, China. pp. 1452–1455Google Scholar
  137. 137.
    Ledermann A, Wegener M, Von Freymann G (2010) Rhombicuboctahedral three-dimensional photonic quasicrystals. Adv Mater 22:2363–2366Google Scholar
  138. 138.
    Lee JW, Lan PX, Kim B, Lim G, Cho DW (2008) Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J Biomed Mater Res B Appl Biomater 87:1–9Google Scholar
  139. 139.
    Lee JW, Lee IH, Cho DW (2006) Development of micro-stereolithography technology using metal powder. Microelect Eng 83:1253–1256Google Scholar
  140. 140.
    Lee KJ, Jun BH, Kim TH, Joung J (2006) Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17:2424–2428Google Scholar
  141. 141.
    Lee Y, Lu X, Hao Y, Yang SF, Ubic R, Evans JRG, Parini CG (2007) Rapid prototyping of ceramic millimeterwave metamaterials: Simulations and experiments. Microw Opt Technol Lett 49(9):2090–2093Google Scholar
  142. 142.
    Lee Y, Lu, X, Hao Y, Yang SF, Ubic R, Evans JRG, Parini CG (2007) Directive millimetre-wave antenna based on freeformed woodpile EBG structure. Electron Lett 43(4):195–196Google Scholar
  143. 143.
    Lee Y, Lu, X, Hao Y, Yang SF, Evans JRG, Parini CG (2008) Directive millimetrewave antennas using freeformed ceramic metamaterials in planar and cylindrical forms. In: IEEE antennas and propagation society international symposium, vol. 1–9, San Diego, CA, 5–11 Jul 2008. pp. 2242–2245Google Scholar
  144. 144.
    Lee KS, Kim RH, Yang DY, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33:631–681Google Scholar
  145. 145.
    Lee Y, Lu X, Hao Y, Yang SF, Evans JRG, Parini CG (2009) Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures. IEEE Trans Antenn Propag 57(10:2893–2903Google Scholar
  146. 146.
    Lee Y, Lu X, Hao Y, Yang SF, Evans JRG, Parini CG (2010) Narrow-beam azimuthally omni-directional millimetre-wave antenna using freeformed cylindrical woodpile cavity. IEE Proc Microwaves Antenn Propag 4(10):1491–1499Google Scholar
  147. 147.
    Lehmann O, Stuke M (1994) Three-dimensional laser direct writing of electrically conducting and isolating microstructures. Mater Lett 21:131–135Google Scholar
  148. 148.
    Lehua Q, Xiaoshan J, Jun L, Xianghui H, Hejun L (2010) Dominant factors of metal jet breakup in micro droplet deposition manufacturing technique. Chin J Aeronaut 23:495–500Google Scholar
  149. 149.
    Lejeune M, Chartier T, Dossou-Yovo C, Noguera R (2009) Ink-jet printing of ceramic micro-pillar arrays. J Eur Ceram Soc 29:905–911Google Scholar
  150. 150.
    Li R, Ashgriz N, Chandra S (2008) Droplet generation from pulsed micro jets. Exp Therm Fluid Sci 32:1679–1686Google Scholar
  151. 151.
    Lim TW, Son Y, Yang DY, Kong HJ, Lee KS (2010) Selective ablation-assisted two-photon stereolithography for effective nano- and microfabrication. Appl Phys A 103:1111–1116Google Scholar
  152. 152.
    Liu Q, Orme M (2001) High precision solder droplet printing technology and the state-of-the art. J Mater Process Technol 115:271–283Google Scholar
  153. 153.
    Liu Q, Orme M (2001) On precision droplet-based net-form manufacturing technology. Proc IME B J Eng Manufac 215:1333–1355Google Scholar
  154. 154.
    Liu VA, Bhatia SN (2002) Three-dimensional patterning of hydrogels containing living cells. Biomed Microdevices 4:257–266Google Scholar
  155. 155.
    Longo DM, Hull R (2000). Direct focused ion beam writing of printheads for pattern transfer utilizing microcontact printing. In: Proceedings of the Materials Research Society Symposium, vol. 624. pp. 157–160Google Scholar
  156. 156.
    Lorenz AM, Sachs EM, Allen SM (2004). Techniques for infiltration of a powder metal skeleton by a similar alloy with melting point depressed. U.S. Patent 6,719,948. US Patent and Trademark Office, Massachusetts Institute of Technology.Google Scholar
  157. 157.
    Lu K, Reynolds WT (2008) 3DP process for fine mesh structure printing. Powder Technol 187:11–18Google Scholar
  158. 158.
    Lu S, Anseth KS (1999) Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J Contr Release 57:291–300Google Scholar
  159. 159.
    Lu X, Yang S, Evans JRG (2007) Dose uniformity of fine powders in ultrasonic microfeeding. Powder Techn 175:63–72Google Scholar
  160. 160.
    Lu X, Lee Y, Yang SF, Hao Y, Ubic R, Evans JRG, Parini CG (2008) Fabrication of electromagnetic crystals by extrusion freeforming. Metamaterials 2(1):36–44Google Scholar
  161. 161.
    Lu X, Lee Y, Yang SF, Hao Y, Ubic R, Evans JRG, Parini CG (2009) Fabrication of millimeter-wave electromagnetic bandgap crystals using microwave dielectric powders. J Am Ceram Soc 92(2):371–378Google Scholar
  162. 162.
    Lu X, Lee Y, Yang SF, Hao Y, Evans JRG, Parini CG (2009) Fine lattice structures fabricated by extrusion freeforming: process variables. J Mater Process Tech 209(10):4654–4661Google Scholar
  163. 163.
    Lu X, Lee Y, Yang SF, Hao Y, Evans JRG, Parini CG (2009) Extrusion freeforming of millimeter wave electromagnetic bandgap (EBG) structures. Rapid Prototyping Journal 15(1):42–51Google Scholar
  164. 164.
    Lu X, Lee Y, Yang SF, Hao Y, Evans JRG, Parini CG (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30(1):1–10Google Scholar
  165. 165.
    Lu XS, Chen LF, Amini N, Yang SF, Evans JRG, Guo ZX (2012) Novel methods to fabricate macroporous 3D carbon scaffolds and ordered surface mesopores on carbon filaments. J Porous Mat 19(5):529–536Google Scholar
  166. 166.
    Madden JD, Hunter IW (1996) Three-dimensional microfabrication by localized electrochemical deposition. J Microelectromech Syst 5:24–32Google Scholar
  167. 167.
    Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, New YorkGoogle Scholar
  168. 168.
    Mariani M, Rosatini F, Vozzi G, Previti A, Ahluwalia A (2006) Characterization of tissue-engineered scaffolds microfabricated with PAM. Tissue Eng 12:547–557Google Scholar
  169. 169.
    Maruo S, Ikuta K, Korogi H (2003) Submicron manipulation tools driven by light in a liquid. Appl Phys Lett 82:133–135Google Scholar
  170. 170.
    Maruo S, Kawata S (1998) Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. IEEE ASME J Microelectromech Syst 7:411–415Google Scholar
  171. 171.
    Masuzawa T (2000) State of the art of micro-machining. CIRP Ann Manuf Technol 49:473–488Google Scholar
  172. 172.
    Matsui S (2007) Focused-ion-beam deposition for 3-D nanostructure fabrication. Nucl Instrum Meth B 257:758–764Google Scholar
  173. 173.
    Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130Google Scholar
  174. 174.
    Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Progr Polymer Sci 37:1079–1104Google Scholar
  175. 175.
    Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26:5632–5639Google Scholar
  176. 176.
    MicroFab Inc. (2012). Available from
  177. 177.
    microTEC (2012). Products and applications, microTEC Gesellschaft für Mikrotechnologie mbH. Available from
  178. 178.
    Mihailov S, Lazare S (1993) Fabrication of refractive microlens arrays by excimer laser ablation of amorphous teflon. Appl Optic 32:6211–6218Google Scholar
  179. 179.
    Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F (2008) Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A 85A:218–227Google Scholar
  180. 180.
    Mironov V, Prestwich G, Forgacs G (2007) Bioprinting living structures. J Mater Chem 17:2054–2060Google Scholar
  181. 181.
    Mizeikis V, Juodkazis S, Tarozaite R, Juodkazyte J, Juodkazis K, Misawa H (2007) Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region. Opt Express 15:8454–8464Google Scholar
  182. 182.
    Monneret S, Loubere V, Corbel S (1999) Microstereolithography using dynamic mask generator and a non-coherent visible light source. Proc SPIE 3680:553–561Google Scholar
  183. 183.
    Monneret S, Provin C, Gall HL, Corbel S (2002) Microfabrication of freedom and articulated alumina-based components. Microsyst Technol 8:368–374Google Scholar
  184. 184.
    Morgan JC (1998) Focused ion beam mask repair. Solid State Tech 41:61–67Google Scholar
  185. 185.
    Nagel DJ (2002) Technologies for micrometer and nanometer pattern and material transfer. In: Pique A, Chrisey DB (eds) Direct write technologies for rapid prototyping applications. Academic, New York, pp 557–701Google Scholar
  186. 186.
    Nakamoto T, Yamaguchi K, (1996). Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer. In: Proceedings of 7th International Symposium on Micro Machine and Human Science, pp. 53–58.Google Scholar
  187. 187.
    Narahara H, Tanaka F, Kishinami T, Igarashi S, Saito K (1999) Reaction heat effects on initial linear shrinkage and deformation in stereolithography. Rapid Prototyping J 5:120–128Google Scholar
  188. 188.
    Neumann J, Wieking KS, Kip D (1999) Direct laser writing of surface reliefs in dry self-developing photopolymer films. Appl Opt 38:5418–5423Google Scholar
  189. 189.
    Noguera R, Lejeune M, Chartier T (2005) 3D fine scale ceramic components formed by ink-jet prototyping process. J Eur Ceram Soc 25:2055–2059Google Scholar
  190. 190.
    Park IB, Ha YM, Lee SH (2010) Cross-section segmentation for improving the shape accuracy of microstructure array in projection microstereolithography. Int J Adv Manuf Technol 46:151–161Google Scholar
  191. 191.
    Park SH, Lim TW, Yang DY, Kim RH, Lee KS (2006) Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl Phys Lett 89:173131–173133Google Scholar
  192. 192.
    Parker ST, Domachuk P, Amsden J, Bressner J, Lewis JA, Kaplan DL, Omenetto FG (2009) Biocompatible Silk Printed Optical Waveguides. Adv Mater 21:2411–2415Google Scholar
  193. 193.
    Petsch T, Regenfuß P, Ebert R, Hartwig L, Klötzer S, Brabant TH, Exner H (2004). Industrial laser micro sintering. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, Erlangen, Germany. pp. 413–424Google Scholar
  194. 194.
    Priest JW, Smith C, DuBois P (1997). Liquid metal jetting for printing metal parts. In: Solid Freeform Fabrication Symposium, Texas, USAGoogle Scholar
  195. 195.
    Provin C, Monneret S (2002) Complex ceramic-polymer composite microparts made by microstereolithography. IEEE Trans Electron Packag Manuf 25:59–63Google Scholar
  196. 196.
    Provin C, Monneret S, Gall HL, Corbel S (2003) Three-dimensional ceramic microcomponents made using microstereolithography. Adv Mater 15:994–997Google Scholar
  197. 197.
    Qin Y (2010) Micro-manufacturing engineering and technology. Elsevier, OxfordGoogle Scholar
  198. 198.
    Qin Y, Brockett A, Ma Y, Razali A, Zhao J, Harrison C, Pan W, Dai X, Loziak D (2010) Micro manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47:821–837Google Scholar
  199. 199.
    Quinn DJ, Spearing SM, Ashby MF, Fleck NA (2006) A systematic approach to process selection in MEMS. J Microelectromech Syst 15:1039–1050Google Scholar
  200. 200.
    Regenfuss P, Ebert R, Exner H (2007) Laser micro sintering: a versatile instrument for the generation of microparts. Laser Technik Journal 4:26–31Google Scholar
  201. 201.
    Regenfuss P, Hartwig L, Klötzer S, Ebert R, Brabant TH, Petsch T, Exner H (2005) Industrial freeform generation of micro tools by laser micro sintering. Rapid Prototyping J 11:18–25Google Scholar
  202. 202.
    Regenfuss P, Hartwig L, Klötzer S, Ebert R, Exner H (2003). Microparts by a novel modification of selective laser sintering. In: Rapid Prototyping and Manufacturing Conference, Chicago, USAGoogle Scholar
  203. 203.
    Regenfuss P, Streek A, Hartwig L, Klötzer S, Brabant TH, Horn M, Ebert R, Exner H (2007) Principles of laser micro sintering. Rapid Prototyping J 13:204–212Google Scholar
  204. 204.
    Reinhardt C, Passinger S, Chichkov B, Marquart C, Radko I, Bozhevolnyi S (2006) Laser-fabricated dielectric optical components for surface plasmon polaritons. Opt Lett 31:1307–1309Google Scholar
  205. 205.
    Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11:287–300Google Scholar
  206. 206.
    Sachs EM, Cima M.J, Caradonna MA, (2003). Jetting layers of powder and the formation of fine powder beds thereby. US Patent 6,596,224. US Patent and Trademark Office, Massachusetts Institute of TechnologyGoogle Scholar
  207. 207.
    Sachs EM, Haggerty JS, Cima MJ, (1993). Three-dimensional printing techniques. US Patent 5,204,055. US Patent and Trademark Office, Massachusetts Institute of TechnologyGoogle Scholar
  208. 208.
    Scheffer P, Bertsch A, Corbel S, Jejequel JY, Andre JC (1997) Industrial photochemistry XXIV. Relations between light flux and polymerized depth in laser stereolithography. J Photochem Photobiol Chem 107:283–290Google Scholar
  209. 209.
    Schlie S, Ngezahayo A, Ovsianikov A, Fabian T, Kolb HA, Haferkamp H, Chichkov BN (2007) Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique. J Biomater Appl 22:275–287Google Scholar
  210. 210.
    Schiele NR, Koppes RA, Corr DT, Ellison KS, Thompson DM, Ligon LA, Lippert TKM, Chrisey DB (2009) Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications. Appl Surf Sci 255:5444–5447Google Scholar
  211. 211.
    Schuck H, Bauerfeld F, Sauer D, Harzic RL, Velten T, Riemann I, König K, (2007). Rapid prototyping of 3D micro- nanostructures to explore cell behavior. In: 4M Conference Proceedings, Ingbert, Germany. pp. 16–23Google Scholar
  212. 212.
    Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001Google Scholar
  213. 213.
    Schuster M, Turecek C, Weigel G, Saf R, Stampfl J, Varga F, Liska R (2009) Gelatin-based photopolymers for bone replacement materials. J Polymer Sci Polymer Chem 47:7078–7089Google Scholar
  214. 214.
    Seet KK, Mizeikis V, Matsuo S, Juodkazis S, Misawa H (2005) Three-dimensional spiral—architecture photonic crystals obtained by direct laser writing. Adv Mater 17:541–545Google Scholar
  215. 215.
    Seitz H, Rieder W, Leukers B, Tille C (2005) Three dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res 74B:782–788Google Scholar
  216. 216.
    Serbin J, Chichkov BN, Houbertz R (2003) Three-dimensional nanostructuring of hybrid materials by two-photon polymerization. Proc SPIE 5222:171–177Google Scholar
  217. 217.
    Shepherd JNH, Parker ST, Shepherd RF, Gillette MU, Lewis JA, Nuzzo RG (2011) 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures. Adv Funct Mater 21:47–54Google Scholar
  218. 218.
    Shoji S, Smith N, Kawata S (1999) Photofabrication of a photonic crystal using interference of a UV laser. Proc SPIE 3740:541–544Google Scholar
  219. 219.
    Shoji S, Sun HB, Kawata S (2003) Photofabrication of wood-pile three-dimensional photonic crystals using four-beam interference. Appl Phys Lett 83:608–610Google Scholar
  220. 220.
    Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A 83A:747–758Google Scholar
  221. 221.
    Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA (2002) Directed colloidal assembly of 3D periodic structures. Adv Mater 14:1279–1283Google Scholar
  222. 222.
    Stampfl J, Fouad H, Seidler S, Liska R, Schwager F, Woesz A, Fratzl P (2004) Fabrication and moulding of cellular materials by rapid prototyping. Int J Mater Prod Tech 21:285–96Google Scholar
  223. 223.
    Staude I, Von Freymann G, Essig S, Busch K, Wegener M (2011) Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion. Optic Lett 36:67–69Google Scholar
  224. 224.
    Straub M, Nguyen LH, Fazlic A, Gu M (2004) Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon micro-stereo-lithography. Opt Mater 27:359–364Google Scholar
  225. 225.
    Straub M, Ventura M, Gu M (2003) Multiple higher-order stop gaps in infrared polymer photonic crystals. Phys Rev Lett 91:043901Google Scholar
  226. 226.
    Streek A, Regenfus P, Ullmann F, Hartwig L, Ebert R, Exner Hm (2006). Processing of silicon carbide by laser micro sintering. In: The Proceedings of the 17th Annual SFF Symposium. pp. 349–385.Google Scholar
  227. 227.
    Stuke M, Mueller K, Mueller T, Hagedorn R, Jaeger M, Fuhr G (2005) Laser- direct-write creation of three-dimensional orest microcages for contact-free trapping, handling and transfer of small polarizable neutral objects in solution. Appl Physic A 81:915–922Google Scholar
  228. 228.
    Subramanian K, Vail N, Barlow J, Marcus H (1995) Selective laser sintering of alumina with polymer binders. Rapid Prototyping J 1:24–35Google Scholar
  229. 229.
    Subramanian V, Fréchet JMJ, Chang PC, Huang DC, Lee JB, Molesa SE, Murphy AR, Redinger DR, Volkman SK (2005) Progress toward development of all-printed RFID tags: materials, processes, and devices. Proc IEEE 93:1330–1338Google Scholar
  230. 230.
    Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using digtal micro-mirror dynamic mask. Sensor Actuator Phys l21:113–120Google Scholar
  231. 231.
    Sun H, Kawakami T, Xu Y, Ye J, Matuso S, Misawa H, Miwa M, Kaneko R (2000) Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Opt Lett 25:1110–1112Google Scholar
  232. 232.
    Sun HB, Matsuo S, Misawa H (1999) Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin. Appl Phys Lett 74:786–788Google Scholar
  233. 233.
    Sun L, Parker ST, Syoji D, Wang X, Lewis JA, Kaplan DL (2012) Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures. Advanced Healthcare Materials 1:729–735Google Scholar
  234. 234.
    Suzumori K, Koga A, Haneda R (1994) Micro fabrication of integrated FMAs using stereolithography. IEEE MEMS 114:136–141Google Scholar
  235. 235.
    Takagi T, Nakajima N (1993). Photoforming applied to fine machining. In: Proceedings of 4th International Symposium on Micro Machine and Human Science (MHS ‘93). pp. 173–178.Google Scholar
  236. 236.
    Takagi, T., Nakajima, N., 1994. Architecture combination by micro photoforming process. In: 7th IEEE Workshop on Micro Electro Mechanical Systems (MEMS ‘94), Oiso, Japan. pp. 211–216Google Scholar
  237. 237.
    Tay B, Edirisinghe MJ (2001) Investigation of some phenomena occurring during continuous ink-jet printing of ceramics. J Mater Res 16:373–384Google Scholar
  238. 238.
    Thian SCH, Tang Y, Fuh JYH, Wong YS, Lu L, Loh HT (2006) Micro-rapid-prototyping via multi-layered photo-lithography. Int J Adv Manuf Technol 29:1026–1032Google Scholar
  239. 239.
    Thiel M, Rill MS, Freymann GV, Wegener M (2009) Three-dimensional bi-chiral photonic crystals. Adv Mater 21:4680–4682Google Scholar
  240. 240.
    Thienpont H, Baukens V, Ottevaere H, Volckaerts B, Tuteleers P, Vynck P, Vervaeke M, Debaes C, Verschaffelt G, Hermanne A, Veretennicoff I (2001) Free-space micro-optical modules: the missing link for photonic interconnects to silicon chips. Opto-Electronics Review 9:238–247Google Scholar
  241. 241.
    Tirella A, Vozzi G, Ahluwalia A (2008) Biomimicry of PAM Microfabricated Hydrogel Scaffold. Springfield, Soc Imaging Science & TechnologyGoogle Scholar
  242. 242.
    Tirella A, Orsini A, Vozzi G, Ahluwalia A (2009) A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication, 1Google Scholar
  243. 243.
    Tirella A, De Maria C, Criscenti G, Vozzi G, Ahluwalia A (2012) The PAM(2) system: a multilevel approach for fabrication of complex three-dimensional microstructures. Rapid Prototyping J 18:299–307Google Scholar
  244. 244.
    Tropmann A, Lass N, Paust N, Metz T, Ziegler C, Zengerle R, Koltay P (2011) Pneumatic dispensing of nano- to picoliter droplets of liquid metal with the StarJet method for rapid prototyping of metal microstructures. Microfluid Nanofluid 12:75–84Google Scholar
  245. 245.
    Tse AL, Hesketh PJ, Rosen DW (2001). Stereolithography on silicon for microfluidics and microsensor packaging. In: 4th International Workshop on High Aspect Ratio Micro Structure Technology (HARMST ‘01), Baden-Baden, GermanyGoogle Scholar
  246. 246.
    Tse AL, Hesketh PJ, Rosen DW, Gole JL (2003) Stereolithography on silicon for microfluidics and microsensor packaging. Microsyst Technol 9:319–323Google Scholar
  247. 247.
    Ullett JS, Benson-Tolle T, Schultz JW, Chartoff RP (1999) Thermal-expansion and fracture toughness properties of parts made from liquid crystal stereolithography resins. Mater Des 20:91–97Google Scholar
  248. 248.
    Ullett JS, Schultz JW, Chartoff RP (2000) Novel liquid crystal resins for stereolithography. Rapid Prototyping J 6:8–17Google Scholar
  249. 249.
    Varadan VK, Jiang S, Varadan VV (2001) Microstereolithography and other fabrication techniques for 3D MEMS. Wiley, New YorkGoogle Scholar
  250. 250.
    Vorndran E, Klammert U, Klarner M, Grover LM, Barralet JE, Gbureck U (2009) 3D printing of β-tricalcium phosphate ceramics. Dent Mater 25:e18–e19Google Scholar
  251. 251.
    Vozzi G, Ahluwalia A (2007) Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach. J Mater Chem 17:1248–1254Google Scholar
  252. 252.
    Vozzi G, Flaim CJ, Bianchi F, Ahluwalia A, Bhatia S (2002) Microfabricated PLGA scaffolds: a comparative study for application to tissue engineering. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 20:43–47Google Scholar
  253. 253.
    Vozzi G, Previti A, Ciaravella G, Ahluwalia A (2004) Microfabricated fractal branching networks. J Biomed Mater Res A 71A:326–333Google Scholar
  254. 254.
    Walters P, Ieropoulos I, McGoran D (2011). Digital fabrication of a novel bio-actuator for bio-robotic art and design. In: International Conference on Digital Printing Technologies and Digital Fabrication 2011, Minneapolis, MN. pp. 496–499Google Scholar
  255. 255.
    Wang F, Shor L, Darling A, Khalil S, Güceri S, Lau A (2004) Precision extruding deposition and characterization of cellular poly-epsilon-caprolactone tissue scaffolds. Rapid Prototyping J 10:42–49Google Scholar
  256. 256.
    Wanke MC, Lehmann O, Muller K, Wen Q, Stuke M (1997) Laser rapid prototyping of photonic band-gap microstructures. Science 275:1284–1286Google Scholar
  257. 257.
    William K, Maxwell J, Larsson K, Boman M (1999). Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high pressure laser chemical vapour deposition. In: Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS ‘99). pp. 232–237.Google Scholar
  258. 258.
    Woodfield TBF, Malda J, de Wijn J, Péters F, Riesle J, Van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161Google Scholar
  259. 259.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–75Google Scholar
  260. 260.
    Xiong Z, Yan YN, Zhang RJ, Sun L (2001) Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scr Mater 45:773–779Google Scholar
  261. 261.
    Xu G, Zhao W, Tang Y, Lu B (2006) Novel stereolithography system for small size objects. Rapid Prototyping J 12:12–17Google Scholar
  262. 262.
    Yamaguchi K (2003) Generation of 3-dimensional microstructure by metal jet. Microsystem Technol 9:215–219Google Scholar
  263. 263.
    Yamaguchi K, Sakai K, Yamanka T, Hirayama T (2000) Generation of three-dimensional micro structure using metal jet. Precision Eng 24:2–8Google Scholar
  264. 264.
    Yang S, Evans JRG (2004) A dry powder jet printer for dispensing and combinatorial research. Powder Techn 142:219–222Google Scholar
  265. 265.
    Yang S, Evans JRG (2007) Metering and dispensing of powder; the quest for new solid freeforming techniques. Powder Techn 178:56–72Google Scholar
  266. 266.
    Yang HY, Yang SF, Chi XP, Evans JRG (2006) Fine ceramic lattices prepared by extrusion freeforming. J Biomed Mater Res B Appl Biomater 79B(1):116–121Google Scholar
  267. 267.
    Yang HY, Yang SF, Chi XP, Evans JRG, Thompson I, Cook RJ, Robinson P (2008) Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds. J Eur Ceram Soc 28(1):159–167Google Scholar
  268. 268.
    Yang HY, Thompson I, Yang SF, Chi XP, Evans JRG, Cook RJ, Robinson P (2008) Dissolution characteristics of extrusion freeformed hydroxyapatite-tricalcium phosphate scaffolds. J Mater Sci Mater Med 19(11):3345–3353Google Scholar
  269. 269.
    Yang SF, Yang HY, Chi XP, Evans JRG, Thompson I, Cook RJ, Robinson P (2008c) Rapid prototyping of ceramic lattices for hard tissue scaffolds. Mater Des 29:1802–1809Google Scholar
  270. 270.
    Yang HY, Yang SF, Chi XP, Evans JRG (2010) Mechanical strength of extrusion freeformed calcium phosphate filaments. J Mater Sci Mater Med 21(5):1503–1510Google Scholar
  271. 271.
    Yim P (1996). The role surface oxidation in the break-up of laminar liquid metal jets. Ph.D. thesis, MIT, Cambridge, MAGoogle Scholar
  272. 272.
    Young RJ, Puretz J (1995) Focused ion beam insulator deposition. J Vac Sci Tech B 13:2576Google Scholar
  273. 273.
    Yu T, Ober CK, Kuebler SM, Zhou W, Marder SR, Perry JW (2003) Chemically amplified positive resists for two photon three-dimensional microfabrication. Adv Mater 15:517–521Google Scholar
  274. 274.
    Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185Google Scholar
  275. 275.
    Zhang X, Jiang XN, Sun C (1998) Micro-stereolithography for MEMS. Micro electro mechanical systems (MEMS). ASME 66:3–9Google Scholar
  276. 276.
    Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sensor Actuator Phys 77:149–156Google Scholar
  277. 277.
    Zhang YL, Chen QD, Xia H, Sun HB (2010) Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5:435–448Google Scholar
  278. 278.
    Zhou C, Chen Y (2012) Additive manufacturing based on optimized mask video projection for improved accuracy and resolution. J Manuf Process 14:107–118Google Scholar
  279. 279.
    Zhuo X, Yongnian Y, Shenguo W, Renji Z, Chao Z (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46:771–776776Google Scholar
  280. 280.
    Zissi S, Bertsch A, Jejequel JY, Corbel S, Lougnot DJ, Andre JC (1996) Stereolithography and microtechniques. Microsys Technol 2:97–102Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Engineering Materials Group, Engineering Sciences, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  2. 2.Fluid Technology and MicrofluidicsUniversity of RostockRostockGermany

Personalised recommendations