A review on 3D micro-additive manufacturing technologies
- 13k Downloads
- 312 Citations
Abstract
New microproducts need the utilization of a diversity of materials and have complicated three-dimensional (3D) microstructures with high aspect ratios. To date, many micromanufacturing processes have been developed but specific class of such processes are applicable for fabrication of functional and true 3D microcomponents/assemblies. The aptitude to process a broad range of materials and the ability to fabricate functional and geometrically complicated 3D microstructures provides the additive manufacturing (AM) processes some profits over traditional methods, such as lithography-based or micromachining approaches investigated widely in the past. In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-AM systems, 3D direct writing, and hybrid processes, and the key processes have been reviewed comprehensively. Principle and recent progress of each 3D micro-AM process has been described, and the advantages and disadvantages of each process have been presented.
Keywords
Additive manufacturing (AM) Direct writing (DW) Microelectromechanical systems (MEMS) Rapid micromanufacturingPreview
Unable to display preview. Download preview PDF.
References
- 1.Accoto D, Carrozza MC, Dario P (2000) Modelling of micropumps using unimorph piezoelectric actuators and ball valves. J Micromech Microeng 10:277–281Google Scholar
- 2.Adams JJ, DUOSS EB, Malkowski TF, Motala MJ, Ahn BY, Nuzzo RG, Bernhard JT, Lewis JA (2011) Conformal printing of electrically small antennas on three-dimensional surfaces. Adv Mater 23(11)):1335–1340Google Scholar
- 3.Ainsley C, Reis N, Derby B (2002) Freeform fabrication by controlled droplet deposition of powder filled melts. J Mater Sci 37:3155–3161Google Scholar
- 4.Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52:635–657Google Scholar
- 5.Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, Mo XM, Loh HT, Burdet E, Teoh SH (2002) Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 20:35–42Google Scholar
- 6.Arcaute K, Mann B, Wicker R (2010) Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia 6:1047–1054Google Scholar
- 7.Barry RA, Shepherd RF, Hanson JN, Nuzzo RG, Wiltzius P, Lewis JA (2009) Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth. Adv Mater 21:2407–2410Google Scholar
- 8.Barron, JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147Google Scholar
- 9.Bartolo PJ (2011) Stereolithography: materials, processes and applications. Springer, LondonGoogle Scholar
- 10.Bartolo PJ, Gaspar J (2008) Metal filled resin for stereolithography metal part. CIRP Ann Manuf Technol 57:235–238Google Scholar
- 11.Becker EW, Ehrfeld W, Hagmann P, Maner A, Munchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelec Eng 4:35–56Google Scholar
- 12.Beluze L, Bertsch A, Renaud P (1999) Microstereolithography: a new process to build complex 3D objects. In: SPIE symposium on design, test and microfabrication of MEMs/MOEMs, Paris, FranceGoogle Scholar
- 13.Bertsch A, Bernhard P, Vogt C, Renaud P (2000) Rapid prototyping of small size objects. Rapid Prototyping J 6:259–266Google Scholar
- 14.Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001). 3D micromixers—downscaling large-scale industrial static mixers. In: The 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2001), Interlaken, Switzerland. pp. 507–510Google Scholar
- 15.Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001) Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1:56–60Google Scholar
- 16.Bertsch A, Jiguet S, Renaud P (2004) Microfabrication of ceramic components by microstereolithography. J Micromech Microeng 14:197–203Google Scholar
- 17.Bertsch A, Lorenz H, Renaud P (1998). Combining microstereolithography and thick resist UV lithography for 3D microfabrication. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). pp. 18–23.Google Scholar
- 18.Bertsch A, Lorenz H, Renaud P (1999) 3D microfabrication by combining microstereolithography and thick resist UV lithography. Sensor Actuator Phys 73:14–23Google Scholar
- 19.Bertsch A, Zissi S, Jezequel JY, Corbel S, Andre JC (1997) Microstereophotolithography using a liquid crystal display as dynamic mask generator. Microsyst Technol 3:42–47Google Scholar
- 20.Bertsch A, Jezequel YJ, Andre JC (1997) Study of the spatial resolution of a new 3D micro fabrication process; the microstereolithography using a dynamic mask-generator technique. J Photochem Photobiol Chem 107:275–282Google Scholar
- 21.Bhushan B (2007) Handbook of nanotechnology. Springer, New YorkGoogle Scholar
- 22.Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041Google Scholar
- 23.Bredt, J.F., Anderson, T.C., Russell, D.B., 2002. Three dimensional printing materials system. US Patent 6,416,850. US Patent and Trademark Office, Z CorporationGoogle Scholar
- 24.Brinksmeier E, Riemer O, Stern R (2001). Machining of precision parts and microstructures. In: Proceedings of the 10th International Conference on Precision Engineering (ICPE), Yokohama, Japan, 18–20 July. pp. 3–11Google Scholar
- 25.Broer DJ, Mol GN, Challa G (1991) In-situ photopolymerization of oriented liquid-crystalline acrylates. Makromol Chem 192:59–74Google Scholar
- 26.Brousseau EB, Dimov SS, Pham DT (2010) Some recent advances in multi-material micro- and nano-manufacturing. Int J Adv Manuf Technol 47:161–180Google Scholar
- 27.Butler EJ, Folk C, Cohen A, Vasilyev NV, Chen R, del Nido PJ, Dupont PE (2011). Metal MEMS tools for beating-heart tissue approximation. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, ChinaGoogle Scholar
- 28.Buyer’s guide, envisionTEC GmbH. Available from www.envisiontec.de
- 29.Campbell AN, Tanner DM, Soden JM, Stewart DK, Doyle A, Adam E, Gibson M, Abramo M (1997). Electrical and chemical characterization of FIB-deposited insulators. In: Proceedings of the 23 International Symposium on Testing and Failure Analysis. pp. 223–230.Google Scholar
- 30.Cao W, Miyamoto Y (2006) Freeform fabrication of aluminum parts by direct deposition of molten aluminum. J Mater Process Technol 173:209–212Google Scholar
- 31.Cappi B, Özkol E, Ebert J, Telle R (2008) Direct inkjet printing of Si3N4: characterization of ink, green bodies and microstructure. J Eur Ceram Soc 28:2625–2628Google Scholar
- 32.Carreño-Morelli E, Martinerie S, Bidaux JE (2007) Three-dimensional printing of shape memory alloys. Mater Sci Forum 534–536:477–480Google Scholar
- 33.Carrozza MC, Croce N, Magnani B, Dario P (1995) A piezoelectric-driven stereolithography-fabricated micropump. J Micromech Microeng 5:177–179Google Scholar
- 34.Cawley JD (1999) Solid freeform fabrication of ceramics. Curr Opin Solid State Mater Sci 4:483–489Google Scholar
- 35.Cesarano J (1999) A review of robocasting technology. In: Dimos D, Danforth SC, Cima MJ (eds) Solid Freeform and Additive Fabrication. Materials Research Society, WarrendaleGoogle Scholar
- 36.Charmeux JF, Minev R, Dimov S, Minev E, Su S, Harrysson U (2008). Capability study of the Fcubic direct shell process for casting micro-components. 4M Cross Divisional Report. Cardiff University, CardiffGoogle Scholar
- 37.Chatwin CR, Farsari M, Huang S, Heywood HI, Birch PM, Young RCD, Richardson JD (1998) UV microstereolithography system that uses spatial light modulator technology. Appl Optic 37:7514–7522Google Scholar
- 38.Chen RT, Brown ER, Singh RS (2004). A compact 30 GHZ low loss balanced hybrid coupler fabricated using micromachined integrated coax. In: Proceedings 2004 IEEE Radio and Wireless Conference, Atlanta, GAGoogle Scholar
- 39.Cheng YL, Lin JH, Lai JH, Ke CT, Huang YC (2005). Development of dynamic mask photolithography system. In: Proceedings of the 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan. pp. 467–471Google Scholar
- 40.Choi JW, Ha YM, Won MH, Choi KH, Lee SH (2005). Fabrication of 3-dimensional microstructures using dynamic imageprojection. In: Proceedings of International Conference on Precision Engineering and Micro/Nano Technology in Asia (ASPEN 2005), Shenzhen, China. pp. 472–476Google Scholar
- 41.Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications, 3rd edn. World Scientific, SingaporeGoogle Scholar
- 42.Clare AT, Chalker PR, Davies S, Sutcliffe CJ, Tsopanos S (2008) Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int J Mech Mater Des 4:181–187Google Scholar
- 43.Cohen A, (2004). Going beyond silicon MEMS with EFAB Technology. White paper. Microfabrica Inc., BurbankGoogle Scholar
- 44.Cohen A, (2005). EFAB Technology: unlocking the potential of miniaturized medical devices. EVP, Technology and CTO. Microfabrica Inc., BurbankGoogle Scholar
- 45.Cohen A, Chen, R (2007). Microfabricated tissue removal instruments for minimally-invasive procedures. In: 19th International Conference of the Society for Medical Innovation and Technology, Sendai, JapanGoogle Scholar
- 46.Cohen A, Chen R, Frodis U, Wu MT, Folk C (2010) Microscale metal additive manufacturing of multi-component medical devices. Rapid Prototyping J 16:209–215Google Scholar
- 47.Cohen A, Frodis U, Zhang G, (1998). EFAB: batch production of functional, fully-dense metal parts with micron-scale features. In: Solid Freeform Fabrication Symposium Proceedings, The University of Texas, AustinGoogle Scholar
- 48.Cohen A, Kruglick E (2006) EFAB technology and applications. In: Gad-el-Hak M (ed) The MEMS handbook, vol 2nd. CRC Press, Boca RatonGoogle Scholar
- 49.Cohen A, Wooden S (2005). Monolithic 3-D microfabrication of mechanisms with multiple independently-moving parts. In: Proceedings of IMECE2005: 2005 ASME International Mechanical Engineering Congress and Exposition, Florida.Google Scholar
- 50.Cohen A, Zhang G, Tseng F, Frodis U, Mansfeld F, Will P (1999). EFAB: rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS. In: Proceedings of the IEEE International MEMS 99 Conference. pp. 244–251Google Scholar
- 51.Crivello JV (1999) The discovery and development of onium salt cationic photoinitiators. J Polymer Sci Polymer Chem 37:4241–4254Google Scholar
- 52.Crocker JE, Harrison S, Sun LLL, Marcus HL (1998) Using SALDVI and SALD with multi-material structures. J Miner Met Mater Soc 50:21–23Google Scholar
- 53.Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu XL, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54Google Scholar
- 54.Day D, Gu M (1999) Use of two-photon excitation for erasablerewritable three-dimensional bit optical data storage in a photorefractive polymer. Opt Lett 24:948–950Google Scholar
- 55.Debaes C, Vervaeke M, Volckaerts B, Van Erps J, Desmet L, Ottevaere H, Vynck P, Gomez V, Hermanne A, Thienpont H (2005) Low-cost micro-optical modules for board level optical interconnections. IEEE LEOS Newsletter 19:12–14Google Scholar
- 56.Derby B, Reis N (2003) Inkjet printing of highly loaded particulate suspensions. MRS Bull 28:815–818Google Scholar
- 57.Deubel M, Von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447Google Scholar
- 58.Deubel M, Wegener M, Linden S, Von Freymann G, John S (2006) 3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing. Optic Lett 31:805–807Google Scholar
- 59.Dimov, SS, Matthews CW, Glanfield A, Dorrington PA (2006). Roadmapping study in multi-material micro manufacture. In: Proceedings of the Second International Conference on Multi-material Micromanufacture, 4M2006, Grenoble, France, 20–22 September, pp. xi–xxvGoogle Scholar
- 60.Doraiswamy A, Jin C, Narayan RJ, Mageswaran P, Mente P, Modi R, Auyeung R, Chrisey DB, Ovsianikov A, Chichkov B (2006) Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices. Acta Biomaterialia 2:267–275Google Scholar
- 61.Dorj B, Park JH, Kim HW (2012) Robocasting chitosan/nanobioactive glass dual-pore structured scaffolds for bone engineering. Mater Lett 73:119–122Google Scholar
- 62.Dufaud O, Corbel S (2003) Oxygen diffusion in ceramic suspensions for stereolithography. Chem Eng J 92:55–62Google Scholar
- 63.Duoss EB, Twardowski M, Lewis JA (2007) Sol–gel Inks for Direct-Write Assembly of Functional Oxides. Adv Mater 19(21):3485–3489Google Scholar
- 64.Duty C, Jean D, Lackey WJ (2001) Laser chemical vapor deposition: materials, modeling, and process control. Int Mater Rev 46:271–287Google Scholar
- 65.Ebert J, Özkol E, Zeichner A, Uibel K, Weiss O, Koops U, Telle R, Fischer H (2009) Direct inkjet printing of dental prostheses made of zirconia. J Dent Res 88:673–676Google Scholar
- 66.Ebert R, Regenfuss P, Hartwig L, Klötzer S, Exner H, (2003). Process assembly for μm-scale SLS, reaction sintering, and CVD. In: 4th International Symposium on Laser Precision Microfabrication. Proceedings of SPI vol. 5063, S.183–188Google Scholar
- 67.Edinger K (2002) Focused ion beam for direct writing. In: Pique A, Chrisey DB (eds) Direct write technologies for rapid prototyping applications. Academic, New York, pp 347–383Google Scholar
- 68.Edinger K, Melngailis J, Orloff J (1998) Study of precursor gases for focused ion beam insulator deposition. J Vac Sci Tech B 16:3311–3314Google Scholar
- 69.Ehrfeld W, Schmidt A (1998) Recent developments in deep X-ray lithography. J Vac Sci Technol B 16:3526–34Google Scholar
- 70.Evans J, Yang S (2009) Solid freeforming and combinatorial research. Tsinghua Sci Technol 14(S1):94–99Google Scholar
- 71.Exner H, Horn M, Streek A, Hartwig L, Ebert R (2005) First results in laser micro sintering of ceramic materials. European Congress on Advanced Materials and Processes, PragueGoogle Scholar
- 72.Exner H, Horn M, Streek A, Ullmann F, Hartwig L, Regenfuß P, Ebert R (2008). Laser micro sintering: a new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. In: Virtual and physical prototyping, vol 3. Taylor & Francis, New York. pp. 3–11Google Scholar
- 73.Exner H, Regenfuss P, Hartwig L, Klötzer S, Ebert R (2003). Selective laser micro sintering with a novel process. In: 4th International Symposium on Laser Precision Microfabrication. Proceedings of SPI, vol. 5063, S.145–151.Google Scholar
- 74.Farrer RA, LaFratta CN, Li L, Praino J, Naughton MJ, Saleh BEA, Teich MC, Fourkas JT (2006) Selective functionalization of 3-D polymer microstructures. J Am Chem Soc 128:1796–1797Google Scholar
- 75.Fedorovich NE, Oudshroon MH, Geemen D, Hennink WE, Alblas J, Dhert WJA (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30:344–353Google Scholar
- 76.Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Opt Express 14:800–809Google Scholar
- 77.Foulon F, Stuke M (1993) Argon-ion laser direct-write Al deposition from trialkylamine alane precursors. Appl Physic A 56:283–289Google Scholar
- 78.Freymann GV, Ledermann A, Thiel M, Staude I, Essig S, Busch K, Wegener M (2010) Three-dimensional nanostructures for photonics. Adv Funct Mater 20:1038–1052Google Scholar
- 79.Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78:249–251Google Scholar
- 80.Gaspar J, Bartolo PJ, Duarte FM (2008) Cure and rheological analysis of reinforced resins for stereolithography. Mater Sci Forum 587–588:563–567Google Scholar
- 81.Gebhardt A (2003) Rapid prototyping. Hanser Gardner Publications, Inc., Cincinnati (originally published in German)Google Scholar
- 82.Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, New YorkGoogle Scholar
- 83.Gotzen R, Reinhardt A (2008) High volume production by RM: challenges and solutions for small parts and MEMS. International conference on additive technologies. Ptuj, SloveniaGoogle Scholar
- 84.Greulich M, Greul M, Pintat T (1995) Fast, functional prototypes via multiphase jet solidification. Rapid Prototyping J 1:20–25Google Scholar
- 85.Grida I, Evans JRG (2003) Extrusion freeforming of ceramics through fine nozzles. J Eur Ceram Soc 23:629–635Google Scholar
- 86.Guo R, Li Z, Jiang Z, Yuan D, Huang W, Xia A (2005) Log-pile photonic crystal fabricated by two-photon photopolymerization. J Opt A: Pure Appl Opt 7:396–699Google Scholar
- 87.Guo R, Xiao S, Zhai X, Li J, Xia A, Huang W (2006) Micro lens fabrication by means of femtosecond two photon polymerization. Opt Express 14:810–816Google Scholar
- 88.Ha YM, Park IB, Kim HC, Lee SH (2010) Three-dimensional microstructure using partitioned cross-sections in projection microstereolithography. Int J Precis Eng Manuf 11:335–340Google Scholar
- 89.Hadipoespito G, Yang Y, Choi H, Ning G, Li X, (2003). Digital micromirror device based microstereolithography for micro structures of transparent photopolymer and nanocomposites. In: Proceedings of the 14th Solid Freeform Fabrication Symposium, Austin, TX. pp. 13–24Google Scholar
- 90.Haferkamp H, Ostendorf A, Becker H, Czerner S, Stippler P (2004) Combination of Yb:YAG-disc laser and roll-based powder deposition for the micro-laser sintering. J Mater Process Tech 149:623–626Google Scholar
- 91.Hasegawa T, Nakashima K, Omatsu F, Ikuta K (2008) Multi-directional micro switching valve chip with rotary mechanism. Sensor Actuator Phys 143:390–398Google Scholar
- 92.Hatashi T (2000). Direct 3D forming using TFT LCD mask. In: Proceedings of the 8th International Conference on Rapid Prototyping, Tokyo, Japan. pp. 172–177Google Scholar
- 93.Heller C, Schwentenwein M, Russmueller G, Varga F, Stampfl J, Liska R (2009) Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J Polymer Sci Polymer Chem 47:6941–6954Google Scholar
- 94.Hill RT, Lyon JL, Allen R, Stevenson KJ, Shear JB (2005) Aqueous microfabrication of bioelectronic architectures. J Am Chem Soc 127:10707–10711Google Scholar
- 95.Hoffmann P, Melngailis J, Michler J (2000). Focused ion beam induced deposition of gold and rhodium. In: Proceedings of the Materials Research Society Symposium, vol. 624. pp. 171–175Google Scholar
- 96.Hon KKB, Li L, Hutchings IM (2008) Direct writing technology—advances and developments. CIRP Ann Manuf Technol 57:601–620Google Scholar
- 97.Huang YM, Jiang CP (2003) Numerical analysis of mask type stereolithography process using dynamic finite element method. Int J Adv Manuf Technol 21:649–655Google Scholar
- 98.Huang YM, Jeng JY, Jiang, CP, Wang JC (2001). Computer supported force analysis and layer imagine for masked rapid prototyping system. In: Proceedings of the 6th International Conference on Computer Supported Cooperative Work in Design, Ontario, Canada. pp. 562–567Google Scholar
- 99.Hung-Jen Y, Ching-Shiow T, Shan-Hui H, Ching-Lin T (2009) Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed Microdevices 11:615–624Google Scholar
- 100.Igaki J, Kometani R, Nakamatsu K, Kanda K, Haruyama Y, Ochiai Y (2006) Three-dimensional rotor fabrication by focused-ion-beam chemical-vapor deposition. Microelectron Eng 83:1221–1226Google Scholar
- 101.Ikuta K, Hasegawa T, Adachi T (2001). The optimized SMA micropump chip applicable to liquids and gases. In: Thansducers’01 Eurosensors XV Workshop, Munich, GermanyGoogle Scholar
- 102.Ikuta K, Hasegawa T, Adachi T, Maruo S (2000). Fluid drive chips containing multiple pumps and switching valves for biochemical IC family. In: 13th IEEE International Conference on Microelectro Mechanical Systems (MEMS 2000), Miyazaki, Japan. pp. 739–744Google Scholar
- 103.Ikuta K, Hirowatari K (1993). Real three-dimensional microfabrication using stereolithography and metal molding. In: Proceedings of the IEEE international Workshop on Microelectromechanical Systems (MEMS ‘93), Fort Lauderdale. pp. 42–47Google Scholar
- 104.Ikuta K, Maruo S, Kojoma S (1993). New microstereo lithography for freely movable 3D microstructure. In: Proceedings of the IEEE international Workshop on Microelectromechanical Systems (MEMS ‘93), Fort Lauderdale. pp. 290–295Google Scholar
- 105.Ikuta K, Ogata T, Tsubio M, Kojima S, (1996). Development of mass productive microstereolithography. In: Proceedings of the IEEE international Workshop on Microelectromechanical Systems (MEMS), San Diego. pp. 301–305Google Scholar
- 106.Ikuta K, Sasaki Y, Maegawa H, Maruo S, (2002). Microultrasonic homogenizer chip made by hybrid microstereolithography. In: Symposium on Micrototal Analysis Systems (MicroTAS’02) Conference. Kluwer, Norwell.Google Scholar
- 107.Jafari MA, Han W, Mohammadi F (2000) A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping J 6:161–175Google Scholar
- 108.Jayasinghe SN (2007) Bio-electros prays: The development of a promising tool for regenerative and therapeutic medicine. Biotechnol J 2:934–937Google Scholar
- 109.Jiang XS, Qi LH, Luo J, Huang H, Zhou JM (2010) Research on accurate droplet generation for micro-droplet deposition manufacture. Int J Adv Manuf Technol 49:535–541Google Scholar
- 110.Jiguet S, Bertsch A, Renaud P (2002). Microstereolithography and ceramic composite three-dimensional parts. In: Proceedings of the Shaping II conference, Gent, BelgiumGoogle Scholar
- 111.Johander P, Eberhard W, Necula D, Haasl S, Jung E (2007). Three-dimensional electronics packaging and interconnection 3D PACK. 4M Cross Divisional Report. Cardiff University, Cardiff. pp. 8–22.Google Scholar
- 112.Johander P, Haasl S, Persson K, Harrysson U (2007). Layer manufacturing as a generic tool for microsystem integration. In: 4M2007 Conference Proceedings, Borovets, Bulgaria.Google Scholar
- 113.Johander P, Harrysson U, Kaufmann U, Ritzhaupt-Kleissl HJ, (2005). Direct manufacture of ceramic micro components with layered manufacturing methods. In: 4M Conference, Karlsruhe, GermanyGoogle Scholar
- 114.Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 23:611–620Google Scholar
- 115.Karam RM, Casler RJ (2003). A new 3D, direct-write, sub-micron microfabrication process that achieves true optical, mechatronic and packaging integration on glass-ceramic substrates. White paper, Invenios, IncGoogle Scholar
- 116.Kawamoto H (2007). Electronic circuit printing, 3D printing and film formation utilizing electrostatic inkjet technology. In: International Conference on Digital Printing Technologies and Digital Fabrication, Anchorage, Alaska. pp. 961–964Google Scholar
- 117.Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698Google Scholar
- 118.Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping J 11:9–17Google Scholar
- 119.Kim CS, Ahn SH, Jang DY (2012) Review: developments in micro/nanoscale fabrication by focused ion beams. Vacuum 86:1014–1035Google Scholar
- 120.Kim DS, Lee IH, Kwon TH, Cho DW (2004) A barrier embedded Kenics micromixer. J Micromech Microeng 14:1294–1301Google Scholar
- 121.Klein F, Richter B, Striebel T, Franz CM, Freymann GV, Wegener M, Bastmeyer M (2011) Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater 23:1341–1345Google Scholar
- 122.Klein S, Barsella A, Leblond H, Bulou H, Fort A, Andraud C, Lemercier G, Mulatier JC, Dorkenoo K (2005) One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption. Appl Phys Lett 86:211118(1)–211118(3)Google Scholar
- 123.Klosterman DA, Chartoff RP, Osborne NR, Graves GA, Lightman A, Han GW, Bezeredi A, Rodrigues S, Pak S, Kalmanovich G, Dodin L, Tu S (1998) Direct fabrication of ceramics, CMCs by rapid prototyping. Am Ceram Soc Bull 77:69–74Google Scholar
- 124.Ko SH, Chung J, Hotz N, Nam KH, Grigoropoulos CP (2010) Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. J Micromech Microeng 20:125010 (7 pp)Google Scholar
- 125.Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet J, Poulikakos D (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202Google Scholar
- 126.Kobayashi K, Ikuta K (2005). Development of free surface microstereolithography with ultra high resolution to fabricate hybrid 3-D microdevices. In: IEEE International Symposium on Micro-nano Mechatronics and Human SchienceGoogle Scholar
- 127.Kometani R, Funabiki R, Hoshino T, Kanda K, Haruyama Y, Kaito T (2006) Cell wall cutting tool and nano-net fabrication by FIB-CVD for subcellular operations and analysis. Microelectron Eng 83:1642–1645Google Scholar
- 128.Kometani R, Hoshino T, Kondo K, Kanda K, Haruyama Y, Kaito J (2005) Performance of nanomanipulator fabricated on glass capillary by focused ion-beam chemical vapor deposition. J Vac Sci Technol B 23:298–301Google Scholar
- 129.Kometani R, Morita T, Watanabe K, Hoshino T, Kondo K, Kanda K (2004) Nanomanipulator and actuator fabrication on glass capillary by focused-ion beam-chemical vapor deposition. J Vac Sci Technol B 22:257–263Google Scholar
- 130.Lai WH, Chen CC (2005) Effect of oxidation on the breakup and monosized droplet generation of the molten metal jet. AtomizSpr 15:81–102MathSciNetGoogle Scholar
- 131.Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20:49–56Google Scholar
- 132.Lan PX, Lee JW, Seol YJ, Cho DW (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 20:271–279Google Scholar
- 133.Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447Google Scholar
- 134.Landers R, Mühlhaupt R (2000) Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng 282:17–21Google Scholar
- 135.Lanzetta M, Sachs E (2003) Improved surface finish in 3D printing using bimodal powder distribution. Rapid Prototyping J 9:157–166Google Scholar
- 136.Lass N, Tropmann A, Ernst A, Zengerle R, Koltay P (2011). Rapid prototyping of 3d microstructures by direct printing of liquid metal at temperatures up to 500°C using the starjet technology. In: 16th Solid-State Sensors, Actuators and Microsystems International Conference (TRANSDUCERS), Beijing, China. pp. 1452–1455Google Scholar
- 137.Ledermann A, Wegener M, Von Freymann G (2010) Rhombicuboctahedral three-dimensional photonic quasicrystals. Adv Mater 22:2363–2366Google Scholar
- 138.Lee JW, Lan PX, Kim B, Lim G, Cho DW (2008) Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J Biomed Mater Res B Appl Biomater 87:1–9Google Scholar
- 139.Lee JW, Lee IH, Cho DW (2006) Development of micro-stereolithography technology using metal powder. Microelect Eng 83:1253–1256Google Scholar
- 140.Lee KJ, Jun BH, Kim TH, Joung J (2006) Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17:2424–2428Google Scholar
- 141.Lee Y, Lu X, Hao Y, Yang SF, Ubic R, Evans JRG, Parini CG (2007) Rapid prototyping of ceramic millimeterwave metamaterials: Simulations and experiments. Microw Opt Technol Lett 49(9):2090–2093Google Scholar
- 142.Lee Y, Lu, X, Hao Y, Yang SF, Ubic R, Evans JRG, Parini CG (2007) Directive millimetre-wave antenna based on freeformed woodpile EBG structure. Electron Lett 43(4):195–196Google Scholar
- 143.Lee Y, Lu, X, Hao Y, Yang SF, Evans JRG, Parini CG (2008) Directive millimetrewave antennas using freeformed ceramic metamaterials in planar and cylindrical forms. In: IEEE antennas and propagation society international symposium, vol. 1–9, San Diego, CA, 5–11 Jul 2008. pp. 2242–2245Google Scholar
- 144.Lee KS, Kim RH, Yang DY, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33:631–681Google Scholar
- 145.Lee Y, Lu X, Hao Y, Yang SF, Evans JRG, Parini CG (2009) Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures. IEEE Trans Antenn Propag 57(10:2893–2903Google Scholar
- 146.Lee Y, Lu X, Hao Y, Yang SF, Evans JRG, Parini CG (2010) Narrow-beam azimuthally omni-directional millimetre-wave antenna using freeformed cylindrical woodpile cavity. IEE Proc Microwaves Antenn Propag 4(10):1491–1499Google Scholar
- 147.Lehmann O, Stuke M (1994) Three-dimensional laser direct writing of electrically conducting and isolating microstructures. Mater Lett 21:131–135Google Scholar
- 148.Lehua Q, Xiaoshan J, Jun L, Xianghui H, Hejun L (2010) Dominant factors of metal jet breakup in micro droplet deposition manufacturing technique. Chin J Aeronaut 23:495–500Google Scholar
- 149.Lejeune M, Chartier T, Dossou-Yovo C, Noguera R (2009) Ink-jet printing of ceramic micro-pillar arrays. J Eur Ceram Soc 29:905–911Google Scholar
- 150.Li R, Ashgriz N, Chandra S (2008) Droplet generation from pulsed micro jets. Exp Therm Fluid Sci 32:1679–1686Google Scholar
- 151.Lim TW, Son Y, Yang DY, Kong HJ, Lee KS (2010) Selective ablation-assisted two-photon stereolithography for effective nano- and microfabrication. Appl Phys A 103:1111–1116Google Scholar
- 152.Liu Q, Orme M (2001) High precision solder droplet printing technology and the state-of-the art. J Mater Process Technol 115:271–283Google Scholar
- 153.Liu Q, Orme M (2001) On precision droplet-based net-form manufacturing technology. Proc IME B J Eng Manufac 215:1333–1355Google Scholar
- 154.Liu VA, Bhatia SN (2002) Three-dimensional patterning of hydrogels containing living cells. Biomed Microdevices 4:257–266Google Scholar
- 155.Longo DM, Hull R (2000). Direct focused ion beam writing of printheads for pattern transfer utilizing microcontact printing. In: Proceedings of the Materials Research Society Symposium, vol. 624. pp. 157–160Google Scholar
- 156.Lorenz AM, Sachs EM, Allen SM (2004). Techniques for infiltration of a powder metal skeleton by a similar alloy with melting point depressed. U.S. Patent 6,719,948. US Patent and Trademark Office, Massachusetts Institute of Technology.Google Scholar
- 157.Lu K, Reynolds WT (2008) 3DP process for fine mesh structure printing. Powder Technol 187:11–18Google Scholar
- 158.Lu S, Anseth KS (1999) Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J Contr Release 57:291–300Google Scholar
- 159.Lu X, Yang S, Evans JRG (2007) Dose uniformity of fine powders in ultrasonic microfeeding. Powder Techn 175:63–72Google Scholar
- 160.Lu X, Lee Y, Yang SF, Hao Y, Ubic R, Evans JRG, Parini CG (2008) Fabrication of electromagnetic crystals by extrusion freeforming. Metamaterials 2(1):36–44Google Scholar
- 161.Lu X, Lee Y, Yang SF, Hao Y, Ubic R, Evans JRG, Parini CG (2009) Fabrication of millimeter-wave electromagnetic bandgap crystals using microwave dielectric powders. J Am Ceram Soc 92(2):371–378Google Scholar
- 162.Lu X, Lee Y, Yang SF, Hao Y, Evans JRG, Parini CG (2009) Fine lattice structures fabricated by extrusion freeforming: process variables. J Mater Process Tech 209(10):4654–4661Google Scholar
- 163.Lu X, Lee Y, Yang SF, Hao Y, Evans JRG, Parini CG (2009) Extrusion freeforming of millimeter wave electromagnetic bandgap (EBG) structures. Rapid Prototyping Journal 15(1):42–51Google Scholar
- 164.Lu X, Lee Y, Yang SF, Hao Y, Evans JRG, Parini CG (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30(1):1–10Google Scholar
- 165.Lu XS, Chen LF, Amini N, Yang SF, Evans JRG, Guo ZX (2012) Novel methods to fabricate macroporous 3D carbon scaffolds and ordered surface mesopores on carbon filaments. J Porous Mat 19(5):529–536Google Scholar
- 166.Madden JD, Hunter IW (1996) Three-dimensional microfabrication by localized electrochemical deposition. J Microelectromech Syst 5:24–32Google Scholar
- 167.Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, New YorkGoogle Scholar
- 168.Mariani M, Rosatini F, Vozzi G, Previti A, Ahluwalia A (2006) Characterization of tissue-engineered scaffolds microfabricated with PAM. Tissue Eng 12:547–557Google Scholar
- 169.Maruo S, Ikuta K, Korogi H (2003) Submicron manipulation tools driven by light in a liquid. Appl Phys Lett 82:133–135Google Scholar
- 170.Maruo S, Kawata S (1998) Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. IEEE ASME J Microelectromech Syst 7:411–415Google Scholar
- 171.Masuzawa T (2000) State of the art of micro-machining. CIRP Ann Manuf Technol 49:473–488Google Scholar
- 172.Matsui S (2007) Focused-ion-beam deposition for 3-D nanostructure fabrication. Nucl Instrum Meth B 257:758–764Google Scholar
- 173.Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130Google Scholar
- 174.Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Progr Polymer Sci 37:1079–1104Google Scholar
- 175.Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26:5632–5639Google Scholar
- 176.MicroFab Inc. (2012). Available from www.MicroFab.com
- 177.microTEC (2012). Products and applications, microTEC Gesellschaft für Mikrotechnologie mbH. Available from www.microtec-d.com
- 178.Mihailov S, Lazare S (1993) Fabrication of refractive microlens arrays by excimer laser ablation of amorphous teflon. Appl Optic 32:6211–6218Google Scholar
- 179.Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F (2008) Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A 85A:218–227Google Scholar
- 180.Mironov V, Prestwich G, Forgacs G (2007) Bioprinting living structures. J Mater Chem 17:2054–2060Google Scholar
- 181.Mizeikis V, Juodkazis S, Tarozaite R, Juodkazyte J, Juodkazis K, Misawa H (2007) Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region. Opt Express 15:8454–8464Google Scholar
- 182.Monneret S, Loubere V, Corbel S (1999) Microstereolithography using dynamic mask generator and a non-coherent visible light source. Proc SPIE 3680:553–561Google Scholar
- 183.Monneret S, Provin C, Gall HL, Corbel S (2002) Microfabrication of freedom and articulated alumina-based components. Microsyst Technol 8:368–374Google Scholar
- 184.Morgan JC (1998) Focused ion beam mask repair. Solid State Tech 41:61–67Google Scholar
- 185.Nagel DJ (2002) Technologies for micrometer and nanometer pattern and material transfer. In: Pique A, Chrisey DB (eds) Direct write technologies for rapid prototyping applications. Academic, New York, pp 557–701Google Scholar
- 186.Nakamoto T, Yamaguchi K, (1996). Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer. In: Proceedings of 7th International Symposium on Micro Machine and Human Science, pp. 53–58.Google Scholar
- 187.Narahara H, Tanaka F, Kishinami T, Igarashi S, Saito K (1999) Reaction heat effects on initial linear shrinkage and deformation in stereolithography. Rapid Prototyping J 5:120–128Google Scholar
- 188.Neumann J, Wieking KS, Kip D (1999) Direct laser writing of surface reliefs in dry self-developing photopolymer films. Appl Opt 38:5418–5423Google Scholar
- 189.Noguera R, Lejeune M, Chartier T (2005) 3D fine scale ceramic components formed by ink-jet prototyping process. J Eur Ceram Soc 25:2055–2059Google Scholar
- 190.Park IB, Ha YM, Lee SH (2010) Cross-section segmentation for improving the shape accuracy of microstructure array in projection microstereolithography. Int J Adv Manuf Technol 46:151–161Google Scholar
- 191.Park SH, Lim TW, Yang DY, Kim RH, Lee KS (2006) Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl Phys Lett 89:173131–173133Google Scholar
- 192.Parker ST, Domachuk P, Amsden J, Bressner J, Lewis JA, Kaplan DL, Omenetto FG (2009) Biocompatible Silk Printed Optical Waveguides. Adv Mater 21:2411–2415Google Scholar
- 193.Petsch T, Regenfuß P, Ebert R, Hartwig L, Klötzer S, Brabant TH, Exner H (2004). Industrial laser micro sintering. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics, Erlangen, Germany. pp. 413–424Google Scholar
- 194.Priest JW, Smith C, DuBois P (1997). Liquid metal jetting for printing metal parts. In: Solid Freeform Fabrication Symposium, Texas, USAGoogle Scholar
- 195.Provin C, Monneret S (2002) Complex ceramic-polymer composite microparts made by microstereolithography. IEEE Trans Electron Packag Manuf 25:59–63Google Scholar
- 196.Provin C, Monneret S, Gall HL, Corbel S (2003) Three-dimensional ceramic microcomponents made using microstereolithography. Adv Mater 15:994–997Google Scholar
- 197.Qin Y (2010) Micro-manufacturing engineering and technology. Elsevier, OxfordGoogle Scholar
- 198.Qin Y, Brockett A, Ma Y, Razali A, Zhao J, Harrison C, Pan W, Dai X, Loziak D (2010) Micro manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47:821–837Google Scholar
- 199.Quinn DJ, Spearing SM, Ashby MF, Fleck NA (2006) A systematic approach to process selection in MEMS. J Microelectromech Syst 15:1039–1050Google Scholar
- 200.Regenfuss P, Ebert R, Exner H (2007) Laser micro sintering: a versatile instrument for the generation of microparts. Laser Technik Journal 4:26–31Google Scholar
- 201.Regenfuss P, Hartwig L, Klötzer S, Ebert R, Brabant TH, Petsch T, Exner H (2005) Industrial freeform generation of micro tools by laser micro sintering. Rapid Prototyping J 11:18–25Google Scholar
- 202.Regenfuss P, Hartwig L, Klötzer S, Ebert R, Exner H (2003). Microparts by a novel modification of selective laser sintering. In: Rapid Prototyping and Manufacturing Conference, Chicago, USAGoogle Scholar
- 203.Regenfuss P, Streek A, Hartwig L, Klötzer S, Brabant TH, Horn M, Ebert R, Exner H (2007) Principles of laser micro sintering. Rapid Prototyping J 13:204–212Google Scholar
- 204.Reinhardt C, Passinger S, Chichkov B, Marquart C, Radko I, Bozhevolnyi S (2006) Laser-fabricated dielectric optical components for surface plasmon polaritons. Opt Lett 31:1307–1309Google Scholar
- 205.Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11:287–300Google Scholar
- 206.Sachs EM, Cima M.J, Caradonna MA, (2003). Jetting layers of powder and the formation of fine powder beds thereby. US Patent 6,596,224. US Patent and Trademark Office, Massachusetts Institute of TechnologyGoogle Scholar
- 207.Sachs EM, Haggerty JS, Cima MJ, (1993). Three-dimensional printing techniques. US Patent 5,204,055. US Patent and Trademark Office, Massachusetts Institute of TechnologyGoogle Scholar
- 208.Scheffer P, Bertsch A, Corbel S, Jejequel JY, Andre JC (1997) Industrial photochemistry XXIV. Relations between light flux and polymerized depth in laser stereolithography. J Photochem Photobiol Chem 107:283–290Google Scholar
- 209.Schlie S, Ngezahayo A, Ovsianikov A, Fabian T, Kolb HA, Haferkamp H, Chichkov BN (2007) Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique. J Biomater Appl 22:275–287Google Scholar
- 210.Schiele NR, Koppes RA, Corr DT, Ellison KS, Thompson DM, Ligon LA, Lippert TKM, Chrisey DB (2009) Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications. Appl Surf Sci 255:5444–5447Google Scholar
- 211.Schuck H, Bauerfeld F, Sauer D, Harzic RL, Velten T, Riemann I, König K, (2007). Rapid prototyping of 3D micro- nanostructures to explore cell behavior. In: 4M Conference Proceedings, Ingbert, Germany. pp. 16–23Google Scholar
- 212.Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001Google Scholar
- 213.Schuster M, Turecek C, Weigel G, Saf R, Stampfl J, Varga F, Liska R (2009) Gelatin-based photopolymers for bone replacement materials. J Polymer Sci Polymer Chem 47:7078–7089Google Scholar
- 214.Seet KK, Mizeikis V, Matsuo S, Juodkazis S, Misawa H (2005) Three-dimensional spiral—architecture photonic crystals obtained by direct laser writing. Adv Mater 17:541–545Google Scholar
- 215.Seitz H, Rieder W, Leukers B, Tille C (2005) Three dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res 74B:782–788Google Scholar
- 216.Serbin J, Chichkov BN, Houbertz R (2003) Three-dimensional nanostructuring of hybrid materials by two-photon polymerization. Proc SPIE 5222:171–177Google Scholar
- 217.Shepherd JNH, Parker ST, Shepherd RF, Gillette MU, Lewis JA, Nuzzo RG (2011) 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures. Adv Funct Mater 21:47–54Google Scholar
- 218.Shoji S, Smith N, Kawata S (1999) Photofabrication of a photonic crystal using interference of a UV laser. Proc SPIE 3740:541–544Google Scholar
- 219.Shoji S, Sun HB, Kawata S (2003) Photofabrication of wood-pile three-dimensional photonic crystals using four-beam interference. Appl Phys Lett 83:608–610Google Scholar
- 220.Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A 83A:747–758Google Scholar
- 221.Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA (2002) Directed colloidal assembly of 3D periodic structures. Adv Mater 14:1279–1283Google Scholar
- 222.Stampfl J, Fouad H, Seidler S, Liska R, Schwager F, Woesz A, Fratzl P (2004) Fabrication and moulding of cellular materials by rapid prototyping. Int J Mater Prod Tech 21:285–96Google Scholar
- 223.Staude I, Von Freymann G, Essig S, Busch K, Wegener M (2011) Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion. Optic Lett 36:67–69Google Scholar
- 224.Straub M, Nguyen LH, Fazlic A, Gu M (2004) Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon micro-stereo-lithography. Opt Mater 27:359–364Google Scholar
- 225.Straub M, Ventura M, Gu M (2003) Multiple higher-order stop gaps in infrared polymer photonic crystals. Phys Rev Lett 91:043901Google Scholar
- 226.Streek A, Regenfus P, Ullmann F, Hartwig L, Ebert R, Exner Hm (2006). Processing of silicon carbide by laser micro sintering. In: The Proceedings of the 17th Annual SFF Symposium. pp. 349–385.Google Scholar
- 227.Stuke M, Mueller K, Mueller T, Hagedorn R, Jaeger M, Fuhr G (2005) Laser- direct-write creation of three-dimensional orest microcages for contact-free trapping, handling and transfer of small polarizable neutral objects in solution. Appl Physic A 81:915–922Google Scholar
- 228.Subramanian K, Vail N, Barlow J, Marcus H (1995) Selective laser sintering of alumina with polymer binders. Rapid Prototyping J 1:24–35Google Scholar
- 229.Subramanian V, Fréchet JMJ, Chang PC, Huang DC, Lee JB, Molesa SE, Murphy AR, Redinger DR, Volkman SK (2005) Progress toward development of all-printed RFID tags: materials, processes, and devices. Proc IEEE 93:1330–1338Google Scholar
- 230.Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using digtal micro-mirror dynamic mask. Sensor Actuator Phys l21:113–120Google Scholar
- 231.Sun H, Kawakami T, Xu Y, Ye J, Matuso S, Misawa H, Miwa M, Kaneko R (2000) Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Opt Lett 25:1110–1112Google Scholar
- 232.Sun HB, Matsuo S, Misawa H (1999) Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin. Appl Phys Lett 74:786–788Google Scholar
- 233.Sun L, Parker ST, Syoji D, Wang X, Lewis JA, Kaplan DL (2012) Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures. Advanced Healthcare Materials 1:729–735Google Scholar
- 234.Suzumori K, Koga A, Haneda R (1994) Micro fabrication of integrated FMAs using stereolithography. IEEE MEMS 114:136–141Google Scholar
- 235.Takagi T, Nakajima N (1993). Photoforming applied to fine machining. In: Proceedings of 4th International Symposium on Micro Machine and Human Science (MHS ‘93). pp. 173–178.Google Scholar
- 236.Takagi, T., Nakajima, N., 1994. Architecture combination by micro photoforming process. In: 7th IEEE Workshop on Micro Electro Mechanical Systems (MEMS ‘94), Oiso, Japan. pp. 211–216Google Scholar
- 237.Tay B, Edirisinghe MJ (2001) Investigation of some phenomena occurring during continuous ink-jet printing of ceramics. J Mater Res 16:373–384Google Scholar
- 238.Thian SCH, Tang Y, Fuh JYH, Wong YS, Lu L, Loh HT (2006) Micro-rapid-prototyping via multi-layered photo-lithography. Int J Adv Manuf Technol 29:1026–1032Google Scholar
- 239.Thiel M, Rill MS, Freymann GV, Wegener M (2009) Three-dimensional bi-chiral photonic crystals. Adv Mater 21:4680–4682Google Scholar
- 240.Thienpont H, Baukens V, Ottevaere H, Volckaerts B, Tuteleers P, Vynck P, Vervaeke M, Debaes C, Verschaffelt G, Hermanne A, Veretennicoff I (2001) Free-space micro-optical modules: the missing link for photonic interconnects to silicon chips. Opto-Electronics Review 9:238–247Google Scholar
- 241.Tirella A, Vozzi G, Ahluwalia A (2008) Biomimicry of PAM Microfabricated Hydrogel Scaffold. Springfield, Soc Imaging Science & TechnologyGoogle Scholar
- 242.Tirella A, Orsini A, Vozzi G, Ahluwalia A (2009) A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication, 1Google Scholar
- 243.Tirella A, De Maria C, Criscenti G, Vozzi G, Ahluwalia A (2012) The PAM(2) system: a multilevel approach for fabrication of complex three-dimensional microstructures. Rapid Prototyping J 18:299–307Google Scholar
- 244.Tropmann A, Lass N, Paust N, Metz T, Ziegler C, Zengerle R, Koltay P (2011) Pneumatic dispensing of nano- to picoliter droplets of liquid metal with the StarJet method for rapid prototyping of metal microstructures. Microfluid Nanofluid 12:75–84Google Scholar
- 245.Tse AL, Hesketh PJ, Rosen DW (2001). Stereolithography on silicon for microfluidics and microsensor packaging. In: 4th International Workshop on High Aspect Ratio Micro Structure Technology (HARMST ‘01), Baden-Baden, GermanyGoogle Scholar
- 246.Tse AL, Hesketh PJ, Rosen DW, Gole JL (2003) Stereolithography on silicon for microfluidics and microsensor packaging. Microsyst Technol 9:319–323Google Scholar
- 247.Ullett JS, Benson-Tolle T, Schultz JW, Chartoff RP (1999) Thermal-expansion and fracture toughness properties of parts made from liquid crystal stereolithography resins. Mater Des 20:91–97Google Scholar
- 248.Ullett JS, Schultz JW, Chartoff RP (2000) Novel liquid crystal resins for stereolithography. Rapid Prototyping J 6:8–17Google Scholar
- 249.Varadan VK, Jiang S, Varadan VV (2001) Microstereolithography and other fabrication techniques for 3D MEMS. Wiley, New YorkGoogle Scholar
- 250.Vorndran E, Klammert U, Klarner M, Grover LM, Barralet JE, Gbureck U (2009) 3D printing of β-tricalcium phosphate ceramics. Dent Mater 25:e18–e19Google Scholar
- 251.Vozzi G, Ahluwalia A (2007) Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach. J Mater Chem 17:1248–1254Google Scholar
- 252.Vozzi G, Flaim CJ, Bianchi F, Ahluwalia A, Bhatia S (2002) Microfabricated PLGA scaffolds: a comparative study for application to tissue engineering. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 20:43–47Google Scholar
- 253.Vozzi G, Previti A, Ciaravella G, Ahluwalia A (2004) Microfabricated fractal branching networks. J Biomed Mater Res A 71A:326–333Google Scholar
- 254.Walters P, Ieropoulos I, McGoran D (2011). Digital fabrication of a novel bio-actuator for bio-robotic art and design. In: International Conference on Digital Printing Technologies and Digital Fabrication 2011, Minneapolis, MN. pp. 496–499Google Scholar
- 255.Wang F, Shor L, Darling A, Khalil S, Güceri S, Lau A (2004) Precision extruding deposition and characterization of cellular poly-epsilon-caprolactone tissue scaffolds. Rapid Prototyping J 10:42–49Google Scholar
- 256.Wanke MC, Lehmann O, Muller K, Wen Q, Stuke M (1997) Laser rapid prototyping of photonic band-gap microstructures. Science 275:1284–1286Google Scholar
- 257.William K, Maxwell J, Larsson K, Boman M (1999). Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high pressure laser chemical vapour deposition. In: Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS ‘99). pp. 232–237.Google Scholar
- 258.Woodfield TBF, Malda J, de Wijn J, Péters F, Riesle J, Van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161Google Scholar
- 259.Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–75Google Scholar
- 260.Xiong Z, Yan YN, Zhang RJ, Sun L (2001) Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scr Mater 45:773–779Google Scholar
- 261.Xu G, Zhao W, Tang Y, Lu B (2006) Novel stereolithography system for small size objects. Rapid Prototyping J 12:12–17Google Scholar
- 262.Yamaguchi K (2003) Generation of 3-dimensional microstructure by metal jet. Microsystem Technol 9:215–219Google Scholar
- 263.Yamaguchi K, Sakai K, Yamanka T, Hirayama T (2000) Generation of three-dimensional micro structure using metal jet. Precision Eng 24:2–8Google Scholar
- 264.Yang S, Evans JRG (2004) A dry powder jet printer for dispensing and combinatorial research. Powder Techn 142:219–222Google Scholar
- 265.Yang S, Evans JRG (2007) Metering and dispensing of powder; the quest for new solid freeforming techniques. Powder Techn 178:56–72Google Scholar
- 266.Yang HY, Yang SF, Chi XP, Evans JRG (2006) Fine ceramic lattices prepared by extrusion freeforming. J Biomed Mater Res B Appl Biomater 79B(1):116–121Google Scholar
- 267.Yang HY, Yang SF, Chi XP, Evans JRG, Thompson I, Cook RJ, Robinson P (2008) Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds. J Eur Ceram Soc 28(1):159–167Google Scholar
- 268.Yang HY, Thompson I, Yang SF, Chi XP, Evans JRG, Cook RJ, Robinson P (2008) Dissolution characteristics of extrusion freeformed hydroxyapatite-tricalcium phosphate scaffolds. J Mater Sci Mater Med 19(11):3345–3353Google Scholar
- 269.Yang SF, Yang HY, Chi XP, Evans JRG, Thompson I, Cook RJ, Robinson P (2008c) Rapid prototyping of ceramic lattices for hard tissue scaffolds. Mater Des 29:1802–1809Google Scholar
- 270.Yang HY, Yang SF, Chi XP, Evans JRG (2010) Mechanical strength of extrusion freeformed calcium phosphate filaments. J Mater Sci Mater Med 21(5):1503–1510Google Scholar
- 271.Yim P (1996). The role surface oxidation in the break-up of laminar liquid metal jets. Ph.D. thesis, MIT, Cambridge, MAGoogle Scholar
- 272.Young RJ, Puretz J (1995) Focused ion beam insulator deposition. J Vac Sci Tech B 13:2576Google Scholar
- 273.Yu T, Ober CK, Kuebler SM, Zhou W, Marder SR, Perry JW (2003) Chemically amplified positive resists for two photon three-dimensional microfabrication. Adv Mater 15:517–521Google Scholar
- 274.Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185Google Scholar
- 275.Zhang X, Jiang XN, Sun C (1998) Micro-stereolithography for MEMS. Micro electro mechanical systems (MEMS). ASME 66:3–9Google Scholar
- 276.Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sensor Actuator Phys 77:149–156Google Scholar
- 277.Zhang YL, Chen QD, Xia H, Sun HB (2010) Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5:435–448Google Scholar
- 278.Zhou C, Chen Y (2012) Additive manufacturing based on optimized mask video projection for improved accuracy and resolution. J Manuf Process 14:107–118Google Scholar
- 279.Zhuo X, Yongnian Y, Shenguo W, Renji Z, Chao Z (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46:771–776776Google Scholar
- 280.Zissi S, Bertsch A, Jejequel JY, Corbel S, Lougnot DJ, Andre JC (1996) Stereolithography and microtechniques. Microsys Technol 2:97–102Google Scholar