The optimum projection angle of fringe projection for ball grid array inspection based on reflectance analysis

  • ZhuCheng Li
  • Young Chang Kang
  • Jun-Hee Moon
  • Heui Jae Pahk
ORIGINAL ARTICLE

Abstract

A solder bump is regarded as a specular-dominant shiny component that distorts the height profile and causes poor repeatability during the bump height measurement. In this paper, we analyze the relationship between the projection angle and other factors based on the general reflectance mechanism of the specular surface. An optimum projection angle exists, such that can produce the best repeatability of the bump height measurement; therefore, we propose a convenient experimental system with a circular motion guide that can evaluate the optimum projection angle experimentally. The experimental results show that best repeatability is obtained with the optimum projection angle. The proposed method to find the optimum projection angle in this paper can therefore be applied to the many cases of measurement for ball grid array samples having specular-dominant shiny component.

Keywords

Optimum projection angle Reflectance analysis Shiny components Ball grid array Fringe projection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Srinivasan V, Liu HC, Halioua M (1984) Automated phase-measuring profilometry of 3-D diffuse objects. Appl Optics 23:3105–3108CrossRefGoogle Scholar
  2. 2.
    Gorthi SS, Rastogi P (2009) Fringe projection techniques: whither we are? Opt Lasers Eng 48(2):133–140CrossRefGoogle Scholar
  3. 3.
    Yen HN, Tsai DM (2004) A fast full-field 3D measurement system for BGA coplanarity inspection. Int J Adv Manuf Technol 24(1–2):132–139Google Scholar
  4. 4.
    Wolfe LB (1987) Spectral and polarization stereo methods using a single light source, in Proceedings of the IEEE first International Conference on Computer Vision (ICCV): 708–715Google Scholar
  5. 5.
    Hu Q, Harding KG, Du X Hamilton D (2005) Shiny parts measurement using color separation. Proc. SPIE 6000, 6000D1–8Google Scholar
  6. 6.
    Zhang S, Yau ST (2009) High dynamic range scanning technique. Opt Eng 48(3)Google Scholar
  7. 7.
    Vargas J, Koninckx T, Quiroga JA, Gool LV (2008) Three-dimensional measurement of microchips using structured light techniques. Opt Eng 47(5)Google Scholar
  8. 8.
    Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72:156–160CrossRefGoogle Scholar
  9. 9.
    Horn BKP (1977) Understanding image intensities. Artific Intell 8(11):201–231MATHCrossRefGoogle Scholar
  10. 10.
    Horn BKP, Sjoberg RW (1979) Calculating the reflectance map. Appl Optics 18(1):1170–1779Google Scholar
  11. 11.
    Nayar SK, Sanderson AC, Weiss LE, Simon DA (1990) Specular surface inspection using structured highlight and Gaussian images. IEEE Trans Rob Autom 6(2):208–218CrossRefGoogle Scholar
  12. 12.
    Zhang S, Yau ST (2007) Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Appl Optics 46(1):36–43CrossRefGoogle Scholar
  13. 13.
    Notni GH, Notni G (2003) Digital fringe projection in 3D shape measurement—an error analysis. Proc SPIE 5114:372–380CrossRefGoogle Scholar
  14. 14.
    Zhang S, Huang PS (2007) Phase error compensation for a three-dimensional shape measurement system based on the phase shifting method. Opt Eng 46(6):063601CrossRefGoogle Scholar
  15. 15.
    Guo H, He H, Chen M (2004) Gamma correction for digital fringe projection profilometry. Appl Opt 43(14):2906–2914CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • ZhuCheng Li
    • 1
  • Young Chang Kang
    • 2
  • Jun-Hee Moon
    • 3
  • Heui Jae Pahk
    • 4
  1. 1.Institute of Advanced Machinery and DesignSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Physics EducationSeoul National UniversitySeoulSouth Korea
  3. 3.Department of Mechanical DesignYuhan UniversityBucheon-siSouth Korea
  4. 4.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations