Influence of milling on surface integrity of Ti6Al4V—study of the metallurgical characteristics: microstructure and microhardness

  • Kamel Moussaoui
  • Michel Mousseigne
  • Johanna Senatore
  • Rémy Chieragatti
  • Frédéric Monies


The quality of titanium alloy parts in the aeronautical field demands high reliability, which is largely related to surface integrity. Surface integrity is generally defined by three parameters: a geometric parameter, a mechanical parameter and a metallurgical parameter. The present article addresses the influence of milling on the metallurgical parameter for a surface milled in Ti6Al4V material, focusing in particular on the microstructure and microhardness. Observation of the machined surface from a macroscopic perspective highlight an orange peel phenomenon. This effect is the combined result of redeposition and crushing of the milled material. No plastically deformed layer or lengthening of the grains was observed under the milled surface. As far as microhardness is concerned, a slightly softened region was observed under the milled surface. A diffusion of vanadium from the β phase to the α phase was also noted, but with no change in microstructure.


Surface integrity Ti6Al4V Milling Microstructure Microhardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ezugwu EO 2005 Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12–13):1353–1367CrossRefGoogle Scholar
  2. 2.
    Konig W (1978) Applied research on the machinability of titanium and its alloys. In: Proceedings of 47th meeting of AGARD structural and materials panel. Florence, Italy, pp 1.1–1.10Google Scholar
  3. 3.
    Sun J, Guo YB (2008) A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium Ti-6Al-4V. Int J Mach Tools Manuf 48(12–13):1486–1494CrossRefGoogle Scholar
  4. 4.
    Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274CrossRefGoogle Scholar
  5. 5.
    Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy TI-6 % AL-4 % V. J Mater Process Technol 166(2):188–192CrossRefGoogle Scholar
  6. 6.
    Che-Haron CH (2001) Tool life and surface integrity in turning titanium alloy. J Mater Process Technol 118(1–3):231–237CrossRefGoogle Scholar
  7. 7.
    Ibrahim GA, Che-Haron CH, Ghani JA (2009) The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI. J Appl Sci 9:121–127CrossRefGoogle Scholar
  8. 8.
    Puerta Velasquez JD (2007) Etude des copeaux et de l’intégrité de surface en usinage à grande vitesse de l’alliage de titane TA6V. PhD thesis, Université Paul Verlaine, MetzGoogle Scholar
  9. 9.
    Puerta Velasquez JD, Tidu A, Bolle B, Chevrier P, Fundenberger J-J (2010) Sub-surface and surface analysis of high speed machined Ti-6Al-4V alloy. Mater Sci Eng, A 527(10–11):2572–2578Google Scholar
  10. 10.
    Mhamdi M-B, Boujelbene M, Bayraktar E, Zghal A (2012) Surface integrity of titanium alloy Ti-6Al-4V in ball end milling. Phys Procedia 25(0):355–362CrossRefGoogle Scholar
  11. 11.
    Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280CrossRefGoogle Scholar
  12. 12.
    Hughes JI, Sharman ARC, Ridgway K (2006) The effect of cutting tool material and edge geometry on tool life and workpiece surface integrity. Proc Inst Mech Eng, B J Eng Manuf 220(2):93–107CrossRefGoogle Scholar
  13. 13.
    Reissig L, Völkl R, Mills MJ, Glatzel U (2004) Investigation of near surface structure in order to determine process-temperatures during different machining processes of Ti6Al4V. Scr Mater 50(1):121–126CrossRefGoogle Scholar
  14. 14.
    Ezugwu EO, Bonney J, Da Silva RB, Cakir O (2007) Surface integrity of finished turned Ti-6Al-4V alloy with PCD tools using conventional and high pressure coolant supplies. Int J Mach Tools Manuf 47(6):884–891CrossRefGoogle Scholar
  15. 15.
    Cantero JL, Tardio MM, Canteli JA, Marcos M, Miguélez MH (2005) Dry drilling of alloy Ti-6Al-4V. Int J Mach Tools Manuf 45(11):1246–1255CrossRefGoogle Scholar
  16. 16.
    Li R, Riester L, Watkins TR, Blau PJ, Shih AJ (2008) Metallurgical analysis and nanoindentation characterization of Ti-6Al-4V workpiece and chips in high-throughput drilling. Mater Sci Eng, A 472(1–2):115–124Google Scholar
  17. 17.
    Sun J, Guo YB (2009) A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V. J Mater Process Technol 209(8):4036–4042MathSciNetCrossRefGoogle Scholar
  18. 18.
    Daymi A, Boujelbene M, Bayraktar E, Ben Amara A, Katundi D (2011) Influence of feed rate on surface integrity of titanium alloy in high speed milling. Adv Mat Res 264–265:1228–1233CrossRefGoogle Scholar
  19. 19.
    Leyens C, Peters M (2003) Titanium and titanium alloys: fundamentals and applications. Wiley, WeinheimCrossRefGoogle Scholar
  20. 20.
    François D (2005) Essais mécaniques des métaux-essais de dureté. Techniques de l’ingénieur, M4160, p 10Google Scholar
  21. 21.
    Zhou L, Shimizu J, Muroya A, Eda H (2003) Material removal mechanism beyond plastic wave propagation rate. Precis Eng 27(2):109–116CrossRefGoogle Scholar
  22. 22.
    Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of inconel 718 and Ti-6Al-6V-2Sn. Wear 202(2):142–148CrossRefGoogle Scholar
  23. 23.
    Ankem S, Margolin H (1986) Modeling deformation in 2-phase alloys. J Met 38:25–29Google Scholar
  24. 24.
    Welsch G, Boyer R, Collings EW (1994) Materials properties handbook: titanium alloys. ASM InternationalGoogle Scholar
  25. 25.
    Banerjee R, Collins PC, Bhattacharyya D, Banerjee S, Fraser HL (2003) Microstructural evolution in laser deposited compositionally graded \(\alpha\backslash\beta\) titanium-vanadium alloys. Acta Mater 51(11):3277–3292CrossRefGoogle Scholar
  26. 26.
    Craighead CM, Simmons OW, Eastwood LW (1950) Titanium binary alloys. Transactions AIME, Trans AIME 188Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Kamel Moussaoui
    • 1
    • 2
  • Michel Mousseigne
    • 1
    • 2
  • Johanna Senatore
    • 1
    • 2
  • Rémy Chieragatti
    • 1
    • 2
  • Frédéric Monies
    • 1
    • 2
  1. 1.Université de Toulouse 3, INSA, UPS, Mines Albi, ISAEToulouseFrance
  2. 2.ICA (Institut Clément Ader)ToulouseFrance

Personalised recommendations