A study on fiber laser micro-spot welding of thin stainless steel using response surface methodology and simulated annealing approach

  • Hsin-Te LiaoEmail author
  • Zhi-Wei Chen


This study analyzed variations of shear strength that depend on the fiber laser process during micro-spot welding of AISI 304 stainless thin sheets. A preliminary study used ANSYS results to obtain initial process conditions. The experimental plan was based on a Taguchi orthogonal array table. A hybrid method that includes the response surface methodology (RSM)- and back propagation neural network (BPNN)- integrated simulated annealing algorithm (SAA) is proposed to search for an optimal parameter setting of the micro-spot welding process. In addition, an analysis of variance was implemented to identify significant factors influencing the micro-spot welding process parameters, which was also used to compare the results of BPNN-integrated SAA with the RSM approach. The results show that the RSM and BPNN/SAA methods are both effective tools for the optimization of micro-spot welding process parameters. A confirmation experiment was also conducted in order to validate the optimal welding process parameter values.


Response surface methodology Back propagation neural network Simulated annealing algorithm ANOVA Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miyamoto I, Kosumi T, Jeong SP, Uragishi H, Watanabe K, Ooie T (2004) Applications of single-mode fiber lasers to novel microwelding. Proc SPIE 5662:507–514CrossRefGoogle Scholar
  2. 2.
    Tamaki T, Watanabe W, Itoh K (2006) Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558nm. Opt Express 14(22):10460–10468CrossRefGoogle Scholar
  3. 3.
    Boglea A, Olowinsky A, Gillner A (2007) Fibre laser welding for packaging of disposable polymeric microfluidic-biochips. Appl Surf Sci 254(4):1174–1178CrossRefGoogle Scholar
  4. 4.
    Chen HC, Pinkerton AJ, Li L, Liu Z, Mistry AT (2011) Gap-free fibre laser welding of Zn-coated steel on Al alloy for light-weight automotive applications. Mater Des 32(2):495–504CrossRefGoogle Scholar
  5. 5.
    Zhu WF, Xu C, Zeng L (2010) Coupled finite element analysis of MIG welding assembly on auto-body high-strength steel panel and door hinge. Int J Adv Manuf Technol 51(5–8):551–559CrossRefGoogle Scholar
  6. 6.
    Lei ZZ, Kang HT, Liu YG (2011) Finite element analysis for transient thermal characteristics of resistance spot welding process with three sheets assemblies. Proced Eng 16:622–631CrossRefGoogle Scholar
  7. 7.
    Siva Shanmugam N, Buvanashekaran G, Sankaranarayanasamy K (2012) Some studies on weld bead geometries for laser spot welding process using finite element analysis. Mater Des 34:412–426CrossRefGoogle Scholar
  8. 8.
    Moshayedi H, Sattari-Far I (2012) Numerical and experimental study of nugget size growth in resistance spot welding of austenitic stain less steels. J Mater Process Technol 212(2):347–354CrossRefGoogle Scholar
  9. 9.
    Montgomery DC (2005) Design and analysis of experiments, 6th edn. Wiley, New YorkzbMATHGoogle Scholar
  10. 10.
    Tzeng CJ, Yang YK (2008) Determination of optimal parameters for SKD11 CNC turning process. Mater Manuf Processe 23(4):363–368CrossRefGoogle Scholar
  11. 11.
    Chuang MT, Yang YK, Hsiao YH (2009) Modeling and optimization of injection molding process parameters for thin-shell plastic parts. Polym Plast Technol Eng 48(7):745–753CrossRefGoogle Scholar
  12. 12.
    Natarajan U, Periyanan PR, Yang SH (2011) Multiple-response optimization for micro-endmilling process using response surface methodology. Int J Adv Manuf Technol 56(1–4):177–185CrossRefGoogle Scholar
  13. 13.
    Puri AB, Banerjee S (2012) Multiple-response optimisation of electrochemical grinding characteristics through response surface methodology. Int J Adv Manuf Technol. doi: 10.1007/s00170-012-4065-8
  14. 14.
    Kuo CF, Chang CD, Fu CT (2008) Optimization of the dyeing process and prediction of quality characteristics on elastic fiber blending fabrics. Polym Plast Technol Eng 47(7):678–687CrossRefGoogle Scholar
  15. 15.
    Fu ZM, Mo JH (2011) Spring back prediction of high-strength sheet metal under air bending forming and tool design based on GA–BPNN. Int J Adv Manuf Technol 53(5–8):473–483CrossRefGoogle Scholar
  16. 16.
    Yu S, Zhu K, Diao F (2008) A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction. Appl Math Comput 195(1):66–75MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mu Y, Zhao GQ, Wu XH, Zhang CR (2010) An optimization strategy for die design in the low-density polyethylene annular extrusion process based on FES/BPNN/NSGA-II. Int J Adv Manuf Technol 50(5–8):517–532CrossRefGoogle Scholar
  18. 18.
    Qiao HA (2006) A systematic computer-aided approach to cooling system optimal design in plastic injection molding. Int J Mech Sci 48(4):430–439zbMATHCrossRefGoogle Scholar
  19. 19.
    Arul S, Raj DS, Vijayaraghavan L, Malhotra SK, Krishnamurthy R (2006) Modeling and optimization of process parameters for defect tolerance drilling of GFRP composites. Mater Manuf Processe 21(4):357–365CrossRefGoogle Scholar
  20. 20.
    Sayarshad HR, Ghoseiri KA (2009) A simulated annealing approach for the multi-periodic rail-car fleet sizing problem. Comput Oper Res 36(6):1789–1799zbMATHCrossRefGoogle Scholar
  21. 21.
    Yang RT, Tzeng CJ, Yang YK, Hsieh MH (2012) Optimization of wire electrical discharge machining process parameters for cutting tungsten. Int J Adv Manuf Technol 60(1–4):135–147zbMATHCrossRefGoogle Scholar
  22. 22.
    Khan MMA, Romoli L, Fiaschi M, Dini G, Sarri F (2012) Multiresponse optimization of laser welding of stainless steels in a constrained fillet joint configuration using RSM. Int J Adv Manuf Technol. doi: 10.1007/s00170-011-3835-z
  23. 23.
    Sawant Badkar D, Shankar Pandey K, Buvanashekaran G (2012) Application of the central composite design in optimization of laser transformation hardening parameters of commercially pure titanium using Nd:YAG laser. Int J Adv Manuf Technol 59(1–4):169–192CrossRefGoogle Scholar
  24. 24.
    Acherjee B, Kuar AS, Mitra S, Mitra D (2011) Application of grey-based Taguchi method for simultaneous optimization of multiple quality characteristics in laser transmission welding process of thermoplastics. Int J Adv Manuf Technol 56(9–12):995–1006CrossRefGoogle Scholar
  25. 25.
    User’s Guide of YLR-200-AC, Ytterbium Fiber Laser (2009) IPG Laser, GmbH, GermanyGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMinghsin University of Science and TechnologyHsinchuTaiwan

Personalised recommendations