Measuring technique and mathematical analysis of conical worms

  • Illés Dudás
  • Sándor BodzásEmail author


Attrition and resharpening of tools, limited accuracy of machine setting, etc. can cause deformation and shape errors of the surfaces. A measuring method has been carried out in the recent years that is the measuring of helical surface without rotary table for conical worms. The use of this method makes it possible to explore the errors arising during production (e.g. thread pitch in axial plane, error of profile shape in axis or any illustrious planes, etc.) and to determine the values of these errors. We have worked out a mathematical model of the generatrix spiroid worm, which is used during the evaluation of the measuring results.


Measuring machine Spiroid worm Thread pitch Profile shape 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bányai K (1977) We can define Hengeres csigák gyártásgeometriája és ellenőrzése. Egyetemi doktori érteketés, MiskolcGoogle Scholar
  2. 2.
    Bercsey T, Horák P (1999) Error analysis of worm gear pairs. 4th Word Congress on Gearing and Power Transmission, 16–18. 03. CINT-PARISGoogle Scholar
  3. 3.
    Dudás I (2000) The theory and practice of worm gear drives. Penton Press, London (ISBN 1 8571 8027 5)Google Scholar
  4. 4.
    Dudás I, Bodzás S (2012) Production geometry analysis, modeling and rapid prototyping production of manufacturing tool of spiroid face gear. Advanced Manufacturing Technology, Springer, Heidelberg, ISSN 0268–3768, DOI  10.1007/s00170-012-4323-9, 2012.07.19., (IF 1.103)
  5. 5.
    Dudás I (2012) Designing of worm gear drives in manufacturing system. J Prod Process Syst 6(1):9–12, Miskolc University Press, HU ISSN 1215–0851Google Scholar
  6. 6.
    Dudás I, Varga GY (2009) Measurements of sophisticated surface pairs in holonic manufacturing system, Proceedings of ISMTII, Saint PetersburgGoogle Scholar
  7. 7.
    Hegyháti J (1988) Untersuchungen zur Anwendung von Spiroidgetrieben. Diss. A. TU. Dresden, p 121Google Scholar
  8. 8.
    Mándy Z, Dudás I, Bodzás S (2011) Manufacture of spiroid worm surfaces in modern intelligent integrated systems, Factory Automation Conference 2011, Széchenyi István Egyetem, Győr, 2011.05.24–2011.05.26., pp 140–147. ISBN 978-963-7175-3Google Scholar
  9. 9.
    Monostoriné R, Dudás I (2010) Spiroid csigahajtás tányérkerekének méréstechnikai elemzése, GÉP—A Gépipari Tudományos Egyesület Műszaki Folyóirata, pp 10–15. ISSN 0016–8572Google Scholar
  10. 10.
    Litvin FL, Fuentes A (2004) Gear geometry and applied theory. Cambridge University Press, Cambridge, ISBN 978 0 521 81517 8zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Production EngineeringUniversity of MiskolcMiskolcHungary
  2. 2.Department of Technical Preparatory and Production EngineeringCollege of NyíregyházaNyíregyházaHungary

Personalised recommendations