Efficient algorithm for time-optimal feedrate planning and smoothing with confined chord error and acceleration

ORIGINAL ARTICLE

Abstract

In this paper, an efficient algorithm is proposed to generate a smooth near-time-optimal feedrate function along a parametric tool path for three-axis CNC machining under a feedrate bound, an acceleration bound for each axis, and a chord error bound. The algorithm first gives a discrete and computationally efficient algorithm to find a sequence of globally optimal velocity points under the feedrate, acceleration, and chord error bounds. A linear programming strategy is proposed to smooth the velocity points sequence. Finally, the velocity points sequence is fitted into a cubic spline to obtain a near-time-optimal and smooth feedrate function. Simulation and experiment results for Non-uniform rational basis spline curves are presented to illustrate the feasibility of the algorithm.

Keywords

Time-optimal feedrate planning Chord error Confined acceleration Discrete velocity searching Feedrate smoothing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators along specified paths. Int J Rob Res 4(3):3–17CrossRefGoogle Scholar
  2. 2.
    Shiller Z (1994) On singular time-optimal control along specified paths. IEEE Trans Robot Autom 10:561–566CrossRefGoogle Scholar
  3. 3.
    Timar SD, Farouki RT, Smith TS, Boyadjieff CL (2005) Algorithms for time-optimal control of CNC machines along curved tool paths. Robot Comput-Integr Manuf 21:37–53CrossRefGoogle Scholar
  4. 4.
    Timar SD, Farouki RT (2007) Time-optimal traversal of curved paths by Cartesian CNC machines under both constant and speed-dependent axis acceleration bounds. Robot Comput-Integr Manuf 23(2):563–579CrossRefGoogle Scholar
  5. 5.
    Boyadjieff CL, Farouki RT, Timar SD (2005) Smoothing of time-optimal feedrates for cartesian CNC machines. In: Mathematics of surfaces XI, LNCS, vol 3604. Springer, Berlin, pp 84–101CrossRefGoogle Scholar
  6. 6.
    Zhang M, Yan W, Yuan CM, Wang DK, Gao, XS (2011) Curve fitting and optimal interpolation on CNC machines based on quadratic B-splines. Sci China Ser F-Inf Sci 54(7):1407–1418MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Zhang K, Yuan CM, Gao XS, Li HB (2012) A greedy algorithm for feedrate planning of CNC machines along curved tool paths with confined jerk. Robot Comput-Integr Manuf 28:472–483CrossRefGoogle Scholar
  8. 8.
    Yuan CM, Zhang K, Fan W, Gao, XS (2011) Time-optimal interpolation for CNC machining along curved tool paths with confined chord error. MM Research Preprints 30:57–89Google Scholar
  9. 9.
    Lin CS, Chang PR, Luh JYS (1983) Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Trans Autom Control 28:1066–1074MATHCrossRefGoogle Scholar
  10. 10.
    Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation. Int J Mach Tools Manuf 41:1323–1345CrossRefGoogle Scholar
  11. 11.
    Altintas Y, Erkorkmaz K (2003) Feedrate optimization for spline interpolation in high speed machine tools. CIRP Ann-Manuf Technol 52(1):297–302CrossRefGoogle Scholar
  12. 12.
    Sencer B, Altintas Y, Croft E (2008) Feed optimization for five-axis CNC machine tools with drive constraints. Int J Mach Tools Manuf 48:733–745CrossRefGoogle Scholar
  13. 13.
    Dong JY, Stori JA (2006) A generalized time-optimal bidirectional scan algorithm for constrained feedrate optimization. J Dyn Syst Meas Control-Trans ASME 128:379–390CrossRefGoogle Scholar
  14. 14.
    Dong JY, Ferreiraa PM, Stori JA (2007) Feedrate optimization with jerk constraints for generating minimum-time trajectories. Int J Mach Tools Manuf 47:1941–1955CrossRefGoogle Scholar
  15. 15.
    Gasparetto A, Lanzutti A, Vidoni R, Zanotto V (2012) Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning. Robot Comput-Integr Manuf 28:164–181CrossRefGoogle Scholar
  16. 16.
    Yeh SS, Hsu PL (2002) Adaptive-feedrate interpolation for parametric curves with a confined chord error. Comput-Aided Des 34:229–237CrossRefGoogle Scholar
  17. 17.
    Ernesto CA, Farouki RT (2012) High-speed cornering by CNC machines under prescribed bounds on axis accelerations and toolpath contour error. Int J Adv Manuf Technol 58:327–338CrossRefGoogle Scholar
  18. 18.
    Feng J, Li Y, Wang Y, Chen M (2010) Design of a real-time adaptive NURBS interpolator with axis acceleration limit. Int J Adv Manuf Technol 48:227–241CrossRefGoogle Scholar
  19. 19.
    Sun Y, Jia Z, Ren F, Guo D (2008) Adaptive feedrate scheduling for NC machining along curvilinear paths with improved kinematic and geometric properties. Int J Adv Manuf Technol 36:60–68.Google Scholar
  20. 20.
    Nam SH, Yang MY (2004) A study on a generalized parametric interpolator with real-time jerk-limited acceleration. Comput-Aided Des 36:27–36CrossRefGoogle Scholar
  21. 21.
    Lai JY, Lin KY, Tseng SJ, Ueng WD (2008) On the development of a parametric interpolator with confined chord error, feedrate, acceleration and jerk. Int J Adv Manuf Technol 37:104–121CrossRefGoogle Scholar
  22. 22.
    Emami MM, Arezoo B (2010) A look-ahead command generator with control over trajectory and chord error for NURBS curve with unknown arc length. Comput-Aided Des 4(7):625–632CrossRefGoogle Scholar
  23. 23.
    Li J, Zhang T, Li Z (2012) An adaptive off-line NURBS interpolator for CNC machining. Int J Adv Manuf Technol. doi:10.1007/s00170-012-3936-3 Google Scholar
  24. 24.
    Lee AC, Lin MT, Pan YR, Lin WY (2011) The feedrate scheduling of NURBS interpolator for CNC machine tools. Comput-Aided Des 43:612–628CrossRefGoogle Scholar
  25. 25.
    Fan W, Gao XS, Yan W, Yuan CM (2012) Interpolation of parametric CNC machining path under confined jounce. Int J Adv Manuf Technol. doi:10.1007/s00170-011-3842-0 Google Scholar
  26. 26.
    Birkhoff G, Rota GC (1969) Ordinary differential equations. Wiley, New YorkMATHGoogle Scholar
  27. 27.
    Karmarkar N (1984) A new polynomial-time algorithm for linear programming. In: ACM symposium on theory of computing. New York, pp 302–311Google Scholar
  28. 28.
    Akima MH (1970) A new method of interpolation and smooth curve fitting based on local procedures. ACM J 17(4):589–602MATHCrossRefGoogle Scholar
  29. 29.
    Yau HT, Lin MT, Tsai MS (2006) Real-time NURBS interpolation using FPGA for high speed motion control. Comput-Aided Des 38:1123–1133CrossRefGoogle Scholar
  30. 30.
    Wu J, Zhou H, Tang X, Chen J (2012) A NURBS interpolation algorithm with continuous feedrate. Int J Adv Manuf Technol 59:623–632CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.KLMM, Institute of Systems Science, AMSSChinese Academy of SciencesBeijingChina

Personalised recommendations