Robot machining: recent development and future research issues

Open Access


Early studies on robot machining were reported in the 1990s. Even though there are continuous worldwide researches on robot machining ever since, the potential of robot applications in machining has yet to be realized. In this paper, the authors will first look into recent development of robot machining. Such development can be roughly categorized into researches on robot machining system development, robot machining path planning, vibration/chatter analysis including path tracking and compensation, dynamic, or stiffness modeling. These researches will obviously improve the accuracy and efficiency of robot machining and provide useful references for developing robot machining systems for tasks once thought to only be capable by CNC machines. In order to advance the technology of robot machining to the next level so that more practical and competitive systems could be developed, the authors suggest that future researches on robot machining should also focus on robot machining efficiency analysis, stiffness map-based path planning, robotic arm link optimization, planning, and scheduling for a line of machining robots.


Robot machining NC path planning Machining efficiency Industrial robots Joint stiffness 


  1. 1.
    International Federation of Robotics. Accessed 18 Feb 2012
  2. 2.
    Foxconn Technology Ltd. Accessed 18 Feb 2012
  3. 3.
    The Robotic Industries Association. Accessed 18 Feb 2012
  4. 4.
    He XJ, Chen YH (2009) Haptic-aided robot path planning based on virtual tele-operation. J Robot and Comput Integr Manuf 25(4-5):792–803, ElsevierCrossRefGoogle Scholar
  5. 5.
    Kuka Robot Group. Accessed 28 Feb 2012
  6. 6.
    Yaskawa Motoman Robotics. Accessed 28 Feb 2012
  7. 7.
    ABB Robotics. Accessed 28 Feb 2012
  8. 8.
    Fanuc Robotics. Accessed 28 Feb 2012
  9. 9.
    Delcam. Accessed 28 Feb 2012
  10. 10.
    Kunieda M, Nakagawa T (1985) Robot-polishing of curved surface with magneto-pressed tool and magnetic force sensor. Twenty-Fifth International Machine Tool Design and Research Conference; Birmingham; UK; 22–24 Apr. 1985. pp. 193–200.Google Scholar
  11. 11.
    Takeuchi Y, Ge D, Asakawa N (1993) Automated polishing process with a human-like dexterous robot. Proc. IEEE International conference on robotics and automation, Atlanta USA, May 1993, pp. 950–956,Google Scholar
  12. 12.
    Lin FY, Lu TS (2005) Development of a robot system for complex surfaces polishing based on CL data. Int J Adv Manuf Technol 26:1132–1137CrossRefGoogle Scholar
  13. 13.
    Whitney DE (1988) Elements of an intelligent robot grinding system. Proceedings of the Third ERR. Gouvieux, France, pp 381–387Google Scholar
  14. 14.
    Liu L, Ulrich BJ, Elbestawi J (1990) Robotic grinding force regulation: design, implementation and benefits. Proc. IEEE International conference on robotics and automation. Cincinati, USA, pp 258–265CrossRefGoogle Scholar
  15. 15.
    Dai H, Yuen KM, Elbestavi J (1993) Parametric modelling and control of the robotic grinding process. Int J Adv Manuf Technol 8(3):182–192CrossRefGoogle Scholar
  16. 16.
    Rena X, Kuhlenkottera B, Muller H (2006) Simulation and verification of belt grinding with industrial robots. Int J Mach Tool Manuf 46:708–716CrossRefGoogle Scholar
  17. 17.
    Huang H, Gong ZM, Chen XQ, Zhou L (2002) Robotic grinding and polishing for turbine-vane overhaul. J Mater Process Technol 127:140–145CrossRefGoogle Scholar
  18. 18.
    Pires JN, Ramming J, Rauch S, Araujo R (2002) Force/torque sensing applied to industrial robotic debuerring. Sens Rev 22(3):232–241CrossRefGoogle Scholar
  19. 19.
    COMET project. Accessed 28 Feb 2012
  20. 20.
    Chen YH, Tse WC (1997) A robotic system for rapid prototyping. Proc of the IEEE International Conference on Robotics and Automation, USA 3:1815–1820CrossRefGoogle Scholar
  21. 21.
    Chen YH, Hu YN (1999) Implementation of a robot system for sculptured surface cutting, Part I, rough machining. Int J Adv Manuf Technol 15:624–629CrossRefGoogle Scholar
  22. 22.
    Chen YH, Hu YN (1999) Implementation of a robot system for sculptured surface cutting. Part II. Finish machining. Int J Adv Manuf Technol 15:630–639CrossRefGoogle Scholar
  23. 23.
    Chen YH, Song Y (1999) Feature-based robot machining for rapid prototyping. J Eng Manuf, Proc Of Inst Mech Engrs, Part B 213(B5):451–459Google Scholar
  24. 24.
    Huang HK, Lin GC (2003) Rapid and flexible prototyping through a dual-robot work-cell. Robot Comput Integr Manuf 19(3):263–272CrossRefGoogle Scholar
  25. 25.
    Owen WS, Croft EA, Benhabib B (2003) Minimally compliant trajectory resolution for robotic machining. Proc IEEE Int Conf on Advanced Robotics 2:702–707, Coimbra, PortugalGoogle Scholar
  26. 26.
    Owen WS, Croft EA, Benhabib B (2006) Real-time trajectory resolution for a two-manipulator machining system. J Robot Syst 22(S1):51–63MATHCrossRefGoogle Scholar
  27. 27.
    Lee RS, Tsai JP, Lee JN (2000) Collaborative virtual cutting verification and remote robot machining through the Internet. IMechE Proc Instn Mech Engrs, Part B 214:635–644CrossRefGoogle Scholar
  28. 28.
    Zielinski C, Mianowski K, Nazarczuk K, Szynkiewicz W (2003) A prototype robot for polishing and milling large objects. Ind Robot 30(1):67–76CrossRefGoogle Scholar
  29. 29.
    Chen YH, Song Y (2001) The development of a layer based machining system. Computer-Aided Design 33(4):331–342CrossRefGoogle Scholar
  30. 30.
    Chen YH, Yang ZY, Sze WS (2001) Determining build orientation for layer-based machining. Int J Adv Manuf Technol 18:313–322CrossRefGoogle Scholar
  31. 31.
    Driels MR, Swayze W, Potter S (1993) Full-pose calibration of a robot manipulator using a coordinate measuring machine. Int J Manuf Technol 8:34–41CrossRefGoogle Scholar
  32. 32.
    Andres J, Gracia L, Tornero J (2011) Calibration and control of a redundant robotic workcell for milling tasks. Computer-Integrated Manufacturing 24(6):561–573CrossRefGoogle Scholar
  33. 33.
    Vergeest JS, Tangelder JW (1995) Robot machines rapid prototype. Ind Robot 23(5):17–20CrossRefGoogle Scholar
  34. 34.
    Oki Y, Kanitani K (1996) Development of robot machining system for aluminum building materials. J JSME 99(937):78–87Google Scholar
  35. 35.
    Matsuoka S, Shimizu K, Yamazaki N, Oki Y (1999) High-speed end milling of an articulated robot and its characteristics. J Mater Process Technol 95:83–89CrossRefGoogle Scholar
  36. 36.
    Zaghbani I, Lamraoui M, Songmene V (2011) Robotic high speed machining of aluminium alloy. Adv Mater Res 188:584–589CrossRefGoogle Scholar
  37. 37.
    Olabi A, Bearee R, Gibaru O, Damak M (2010) Feedrate planning for machining with industrial six-axis robots. Control Eng Pract 18:471–482CrossRefGoogle Scholar
  38. 38.
    Zhang H, Pan, Z (2005) Machining with flexible manipulator: toward improving robotic machining performance, Proc. IEEE/ASME inter Conference on Advanced Intelligent Mechatronics, California, USA, pp.1127–1132Google Scholar
  39. 39.
    Pan Z, Zhang H (2009) Improving robotic machining accuracy by real-time compensation. ICROS-SICE Inter Joint Conference, Fukuoka, Japan, pp. 4289–4294.Google Scholar
  40. 40.
    Abele E, Weigold M, Rothenbucher S (2007) Modeling and Identification of an industrial robot for machining applications. CIRP Ann 56(1):387–390CrossRefGoogle Scholar
  41. 41.
    Abele E, Baer J, Pischan M (2010) Prediction of the tool displacement for robot milling applications using coupled modes of an industrial robot and removal simulation, Proc. CIRP 2nd Inter Conf on Process Machine Interactions, Vancouver, Canada.Google Scholar
  42. 42.
    Vosniakos G, Matsas E (2010) Improving feasibility of robotic milling through robot placement optimization. Robot Comput Integr Manuf 26:517–525CrossRefGoogle Scholar
  43. 43.
    Lopes A, Pires EJS (2011) Optimization of the workpiece location in a machining robotic cell. Int J Adv Robot Syst 8(6):37–46Google Scholar
  44. 44.
    Andrisano AO, Leali F, Pellicciari M (2011) Integrated design of robotic workcells for high quality machining. Proc of Inter Conf. on Innovative Methods in Product Design, Italy, pp 316–321Google Scholar
  45. 45.
    Bisu C, Cherif M, Gerard A, K’Nevez J (2011) Dynamic behavior analysis for a six axis industrial machining robot, Proc ICASAAM, September, 2011. Bucharest, RomaniaGoogle Scholar
  46. 46.
    Duma C, Caro S, Garnier S, Furet B (2011) Joint stiffness identification of six-revolute industrial serial robots. Robot Comput Integr Manuf 27(4):881–888CrossRefGoogle Scholar
  47. 47.
    Dragomatz D, Mann S (1997) A classified bibliography of literature on NC milling path generation. Computer-aided design 29(3):239–247CrossRefGoogle Scholar
  48. 48.
    Chen HC, Yau HT, Lin CC (2012) Computer-aided process planning for NC tool path generation of complex shoe molds. Int J Adv Manuf Technol 58:607–619CrossRefGoogle Scholar
  49. 49.
    Robomaster. Accessed 26 Jul 2012
  50. 50.
    Walstra WH, Bronsvoort WF, Vergeest JSM (1994) Interactive simulation of robot milling for rapid shape prototyping. Comput Graph 18(6):861–871CrossRefGoogle Scholar
  51. 51.
    Olabi A, Bearee R, Nyiri E, Gibaru O (2010) Enhanced trajectory planning for machining with industrial six-axis robots. 2010 IEEE International conference on Industrial Technology, 14–17 March, France, pp.500–506Google Scholar
  52. 52.
    Xiao WL, StrauB H, LoohB T, Hoffmeister HW (2011) Closed-form inverse kinematics of 6R milling robot with singularity avoidance. Prod Eng 5(1):103–110CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of Hong KongPokfulamChina

Personalised recommendations