An experimental investigation on oil mist characterization used in MQL milling process

  • Arnaud Duchosal
  • René Leroy
  • Laurent Vecellio
  • Christophe Louste
  • N. Ranganathan
ORIGINAL ARTICLE

Abstract

In this study, a method is developed to determine the oil mist characteristics for the minimal quantity lubricant process. The oil mist is characterized by the size, velocity, and volume flow rate of its particles. In each case, a specific measurement process is used: the laser diffraction granulometry method, the particle image velocimetry, and the gravimetric method. These methods are used in the case of static and simple models with different inner channels. Experimental tests have been done with the same inner channel as the existing spindle inner channel. Different output models with different inner canalizations have been tested, using these experimental processes. The main goal is to control the characteristics of output oil mist as a function of the input oil mist device parameters.

Keywords

Minimum quantity lubricant Oil mist PIV. Diffraction granulometry method Residual gravimetric method Outside nozzle device 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klocke F, Eisenblatter G (1997) Dry cutting. Ann ClRP 46:519–526CrossRefGoogle Scholar
  2. 2.
    Heinemann R, Hinduja S, Barrow G, Petuelli G (2006) Effect of MQL on the tool life of small twist drills in deep-hole drilling. Int J Mach Tool Manuf 46(1):1–6CrossRefGoogle Scholar
  3. 3.
    Tasdelen B (2008) Analysis and application of minimum quantity lubrication (MQL). thesis, Chalmers University of TechnologyGoogle Scholar
  4. 4.
    Lopez de Lacalle LN, Angulo C, Lamikiz A, Sanchez JA (2006) Experimental and numerical investigation on the effect of spray cutting fluids in high speed milling. J Mater Process Technol 172:11–15CrossRefGoogle Scholar
  5. 5.
    Dhar NR, Ahmed MT, Islam S (2006) An experimental investigation on the effect of minimum quantity lubrication in machining AISI 1040 steel. Int J Mach Tool Manuf 47:748–753CrossRefGoogle Scholar
  6. 6.
    Machado AR, Wallbank J (1997) The effect of extremely low lubricant volumes in machining. Wear 210:76–82CrossRefGoogle Scholar
  7. 7.
    Aoyama T (2002) Development of a mixture supply for machining with minimal quantity lubrication. CIRP Ann Manuf Technol 51(1):289–292CrossRefGoogle Scholar
  8. 8.
    Rahman M, Senthil Kumar A, Salam MU (2002) Experimental evaluation on the effect of minimal quantities of lubricant in milling. Int J Mach Tool Manuf 42:539–547CrossRefGoogle Scholar
  9. 9.
    Obikawa T, Kamata Y, Shinozuka J (2006) High speed grooving applying MQL. Int J Mach Tool Manuf 46:1854–1861CrossRefGoogle Scholar
  10. 10.
    Kamata Y, Obikawa T (2007) High speed MQL finish turning of Inconel 718 with different coated tools. J Mater Process Technol 192:281–286CrossRefGoogle Scholar
  11. 11.
    Obikawa T, Kamata Y, Asano Y, Nakayama K, Otieno AW (2008) Micro-liter lubrication machining of Inconel 718. Int J Mach Tools Manuf 48(15):1599–1604Google Scholar
  12. 12.
    Aoyama T, Kakunima Y, Yamashita M, Aoki M (2008) Development of a new lean lubrication system for near dry machining process. CIRP Ann Manuf Technol 57:125–128CrossRefGoogle Scholar
  13. 13.
    Attanasio A, Gelfi M, Giardini C, Remino C (2006) Minimal quantity lubrication in turning: effect on tool wear. Wear 260:333–338CrossRefGoogle Scholar
  14. 14.
    Park K-H, Olortegui-Yume J, Yoon M-C, Kwon P (2010) A study on droplets and their distribution for minimum quantity lubrication (MQL). Int J Mach Tool Manuf 50:824–833CrossRefGoogle Scholar
  15. 15.
    Benajes J, Molina S, González C, Donde R (2008) The role of nozzle convergence in diesel combustion. Fuel 87:1849–1858CrossRefGoogle Scholar
  16. 16.
    Peiner E, Balke M, Doering L (2009) Form measurement inside fuel injector nozzle spray holes. Microelectron Eng 86:984–986CrossRefGoogle Scholar
  17. 17.
    Kelly JF, Cotterell MG (2002) Minimal lubrication of aluminium alloys. J Mater Process Technol 120:327–334CrossRefGoogle Scholar
  18. 18.
    Wakabayashi T, Suda S, Inasaki I, Terasaka K, Musha Y, Toda Y (2007) Tribological action and cutting performance of MQL media in machining of aluminum. Manuf Technol 56(1):97–100CrossRefGoogle Scholar
  19. 19.
    Suda S, Wakabayashi T, Inasaki I, Yokota H (2004) Multifunctional application of a synthetic ester to machine tool lubrication based on MQL machining lubricants. CIRP Ann Manuf Technol 53(1):61–64CrossRefGoogle Scholar
  20. 20.
    Feret L, Lacour C, de Chasemartin S, Ducruix S, Durox D, Laurent F, Massot M (2009) Pulsated free jets with polydisperse spray injection: experiments and numerical simulations. Proc Combust Inst 32(2):2215–2222CrossRefGoogle Scholar
  21. 21.
    Priol L, Baudel P, Louste C, Romat H (2005) Laser granulometry measurements on electrified jets for different lengths of injector. J Electrost 63:899–904CrossRefGoogle Scholar
  22. 22.
    Mitchell JP, Nagel MW, Nichols S, Nerbrink O (2006) Laser diffractometry as a technique for the rapid assessment of aerosol particle size from inhalers. J Aerosol Med 19(4):409–433CrossRefGoogle Scholar
  23. 23.
    KWONG WTJ, HO SL, COATES AL (2000) Comparison of nebulized particle size distribution with Malvern laser diffraction analyzer versus Andersen cascade impactor and low-flow Marple personal cascade impactor. J Aerosol Med 13(4):303–314CrossRefGoogle Scholar
  24. 24.
    Vecellio None L, Grimbert D, Becquemin MH, Boissinot E, Le Pape A, Lemarié E, Diot P (2001) Validation of laser diffraction method as a substitute for cascade impaction in the European project for a nebulizer standard. J Aerosol Med 14(1):107–114CrossRefGoogle Scholar
  25. 25.
    Husted BP, Petersson P, Lund I, Holmstedt G (2009) Comparison of PIV and PDA droplet velocity measurement techniques on two high-pressure water mist nozzles. Fire saf J 44:1030–1045CrossRefGoogle Scholar
  26. 26.
    Schliter T, Merzkirch W (1996) PIV measurements of the time-averaged flow velocity downstream of flow conditioners in a pipeline. Flow Meas Instrum 7:173–179CrossRefGoogle Scholar
  27. 27.
    Ozalp C, Pinarbasi A, Fakilar MS, Sahin B (2007) PIV measurements of flow through a sudden contraction. Flow Meas Instrum 18:121–128CrossRefGoogle Scholar
  28. 28.
    Vecellio L, Grimbert D, Bordenave J, Benoit G, Furet Y, Fauroux B, Boissinot E, De Monte M, Lemarié E, Diot P (2004) Residual gravimetric method to measure nebulizer output. J Aerosol Med 17(1):63–71CrossRefGoogle Scholar
  29. 29.
    Tandon R, McPeck M, Smaldone GC (1997) Measuring nebulizer output: aerosol production vs gravimetric analysis. Chest 111(5):1361–1365CrossRefGoogle Scholar
  30. 30.
    Adiga KC, Willauer HD, Ananth R, Williams FW (2009) Implications of droplet breakup and formation of ultra fine mist in blast mitigation. Fire Saf J 44:363–369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Arnaud Duchosal
    • 1
  • René Leroy
    • 2
  • Laurent Vecellio
    • 3
  • Christophe Louste
    • 4
  • N. Ranganathan
    • 2
  1. 1.Centre d’Etude et de Recherche sur les Outils Coupants–Laboratoire de Mécanique et RhéologieFondettesFrance
  2. 2.Laboratoire de Mécanique et Rhéologie–Polytech’ ToursToursFrance
  3. 3.DTF-AerodrugToursFrance
  4. 4.Laboratoire d’Etudes AérodynamiquesFuturoscope-ChasseneuilFrance

Personalised recommendations