The arc phenomenon by the characteristic of EN ratio in AC pulse GMAW

  • Hyoung Jin Park
  • Dong Cheol Kim
  • Mun Jin Kang
  • Sehun RheeEmail author


In the automotive industry, aluminum alloy has been recently used to reduce vehicle weight of the vehicle body. Due to the high electrical and thermal conductivities and low melting point of aluminum alloy, however, it is not easy to achieve a high quality of welding. This paper has analyzed the changes in wire melting rate, arc melting phenomenon, and drop size with electrode negative (EN) ratio by applying AC pulse gas metal arc welding to the aluminum alloy sheet welding process. Furthermore, the characteristics of gap bridging have been analyzed and improved from the point of arc melting phenomenon by changing the EN ratio and gap in the welded joint.


AC pulse GMAW Arc melting phenomenon Aluminum alloy EN ratio Gap bridging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patrick EP, Sharp ML (1992) Joining aluminum auto body structure. SAE Paper 820282Google Scholar
  2. 2.
    Brown KR, Venie MS, Woods RA (1995) The increasing use of aluminum in automotive applications. J Met 47(7):20–23Google Scholar
  3. 3.
    Gean A, Westgate SA, Kucza JC, Ehrstrom JC (1999) Static and fatigue behavior of spot welded 5182-0 aluminum alloy sheet. Weld J 99(7):80–86Google Scholar
  4. 4.
    Pravven P, Yarlagadda PKDV, Kang MJ (2005) Advancements in pulse gas metal arc welding. J Mater Process Technol 164–165:1113–1119CrossRefGoogle Scholar
  5. 5.
    Tuttle W (1991) Understanding aluminum welding. Weld J 91(2):43–46Google Scholar
  6. 6.
    Mathers G (2002) The welding of aluminum and it's alloys. CRC, Boca RatonCrossRefGoogle Scholar
  7. 7.
    Kim YS, Eagar TW (1993) Analysis of metal transfer in gas metal arc welding. Weld J 72(6):269–277Google Scholar
  8. 8.
    Park HJ, Kim DC, Kang MJ, Rhee S (2008) Optimization of the wire feed rate during pulse MIG welding of Al sheets. J Achiev Mater Manuf Eng 27(1):83–86Google Scholar
  9. 9.
    Tanimoto J, Minooka M, Nishida Y (1988) Development of the AC pulsed MAG welding process. IIW Asian Pacific Regional Welding Congress, 36th Annual AWI ConferenceGoogle Scholar
  10. 10.
    Maruo H, Hirata Y (1988) MIG welding with rectangular wave AC. Technol Rep The Osaka Univ 38(1935):23–245Google Scholar
  11. 11.
    Ueyama T, Tong H, Harada S, Ushio M (2000) Improve sheet metal welding quality and productivity with AC pulse MIG welding system. IIW EDoc XII-1629–00:86–102Google Scholar
  12. 12.
    Harwig DD, Dierksheide JE, Yapp D, Blackman S (2006) Arc behavior and melting rate in the VP-GMAW process. Weld J 85(3):52–62Google Scholar
  13. 13.
    Naidu DS, Ozcelik S, Moore KL (2003) Modeling, sensing and control of gas metal arc welding. Elsevier, OxfordGoogle Scholar
  14. 14.
    Kou S (2003) Welding metallurgy, 2nd edn. Wiley, New York, p 15Google Scholar
  15. 15.
    Yarmuch MAR, Patchett BM (2007) Variable AC polarity GTAW fusion behavior in 5083 aluminum. Weld J 86(6):196–200Google Scholar
  16. 16.
    Ueyama T, Tong H, Yazawa I, Hirami M (2004) Aluminum hybrid alloy sheet welding by the laser AC pulsed MIG hybrid process. Weld Int 18(5):345–350CrossRefGoogle Scholar
  17. 17.
    Lesnewich A (1958) Control of melting rate and metal transfer in gas shielded metal arc welding Part 1—control of electrode melting rate. Weld J 37(8):343–353Google Scholar
  18. 18.
    Nunes J (1982) MSc Thesis, School of Industrial Science, CranfiledGoogle Scholar
  19. 19.
    Trindade E (1981) MSc Thesis, School of Industrial Science, CranfiledGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Hyoung Jin Park
    • 1
  • Dong Cheol Kim
    • 2
  • Mun Jin Kang
    • 2
  • Sehun Rhee
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringHanyang UniversitySeoulSouth Korea
  2. 2.Advanced Welding and Joining R&D DivisionKITECHIncheonSouth Korea

Personalised recommendations