Outline of a fault diagnosis system for a large-scale board machine

  • Sirkka-Liisa Jämsä-Jounela
  • Vesa-Matti Tikkala
  • Alexey Zakharov
  • Octavio Pozo Garcia
  • Helena Laavi
  • Tommi Myller
  • Tomi Kulomaa
  • Veikko Hämäläinen
Original Article

Abstract

Global competition forces the process industries to continuously optimize plant operation. One of the latest trends in efficiency and plant availability improvement is to set up fault diagnosis and maintenance systems for online industrial use. This paper presents a methodology for developing industrial fault detection and diagnosis (FDD) systems. Since model- or data-based diagnosis of all components cannot be achieved online on a large-scale basis, the focus must be narrowed down to the most likely faulty components responsible for abnormal process behavior. One of the key elements here is fault analysis. The paper describes and briefly discusses also other development phases, process decomposition and the selection of FDD methods. The paper ends with an FDD case study of a large-scale industrial board machine including a description of the fault analysis and FDD algorithms for the resulting focus areas. Finally, the testing and validation results are presented and discussed.

Keywords

Fault monitoring Fault diagnosis Large-scale systems Paper industry Industrial application Board machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ABB AS (2010) EFDD — early fault and disturbance detection, condition monitoring & production optimization. Available from: http://www05.abb.com/global/scot/scot267.nsf/veritydisplay/b16e798c97c2db7d8525771b004c4500/$file/tp004_efdd.pdf. Accessed 25 Oct 2010
  2. 2.
    Cheng H, Tikkala VM, Zakharov A, Myller T, Jämsä-Jounela SL (2011) Application of the enhanced dynamic causal digraph method on a three-layer board machine. IEEE Trans Control Syst Technol 19(3):644–655CrossRefGoogle Scholar
  3. 3.
    Chung H, Bien Z, Park J, Seong P (1994) Incipient multiple fault diagnosis in real time with application to large-scale systems. IEEE Trans Nucl Sci 33(8):1943–1954Google Scholar
  4. 4.
    Dash S, Venkatasubramanian V (2000) Challenges in the industrial applications of fault diagnosis systems. Comput Chem Eng 24:785–791CrossRefGoogle Scholar
  5. 5.
    Ding SX (2008) Model-based fault diagnosis techniques, 1st edn. Springer-Verlag, Berlin, GermanyGoogle Scholar
  6. 6.
    Edthofer F, van der Broeke J, Ettl J, Lettl W, Weingartner A (2010) Reliable online water quality monitoring as basis for fault tolerant control. In: Conference on control and fault tolerant systems, Nice, France, 6–8 Oct 2010Google Scholar
  7. 7.
    Gensym Corporation (1997) G2 reference manual volume 1 version 5. Gensym Intelligent Real-Time Systems, CambridgeGoogle Scholar
  8. 8.
    Gensym Corporation (1997) Getting started with G2 tutorials version 5. Gensym Intelligent Real-Time Systems, CambridgeGoogle Scholar
  9. 9.
    He P, Wang J, Pottmann M, Qin J (2007) A curve fitting method for detecting valve stiction in oscillating control loops. Ind Eng Chem Res 46:4549–4560CrossRefGoogle Scholar
  10. 10.
    Honeywell Inc. (2005) Abnormal situation management for industry. Available from: http://statusreports.atp.nist.gov/reports/94-01-0169PDF.pdf. Accessed 2 November 2010.
  11. 11.
    Horch A (2006) Method and a system for evaluation of static friction. United States Patent US 7047152Google Scholar
  12. 12.
    Isermann R (2011) Fault-diagnosis applications, 1st edn. Springer-Verlag, Berlin, GermanyCrossRefGoogle Scholar
  13. 13.
    Jämsä-Jounela SL (2011) Fault diagnosis methods and their applications in the process industry. In: COSY 2011, special international conference on complex systems: synergy of control, computing & communications, Ohrid, Macedonia, 16–20 Sep 2011Google Scholar
  14. 14.
    Kettunen M, Jämsä-Jounela SL (2011) Fault-tolerant model predictive control of a complex industrial dearomatization process. Ind Eng Chem Res 50(11):6755–6768CrossRefGoogle Scholar
  15. 15.
    Kohonen T (2001) Self-organizing maps, 3rd edn. Springer-Verlag, Berlin, GermanyMATHCrossRefGoogle Scholar
  16. 16.
    Langergraber G, Weingartner A, Fleischmann N (2004) Time-resolved delta spectrometry: a method to define alarm parameters from spectral data. Water Sci Technol 50(11):13–20Google Scholar
  17. 17.
    Langergraber G, van der Broeke J, Lettl W, Weingartner A (2006) Real-time detection of possible harmful events using UV/vis spectrometry. Spectrosc Eur 18(4):1–4Google Scholar
  18. 18.
    Lee G, Yoon E (2001) A process decomposition strategy for qualitative fault diagnosis of large-scale processes. Ind Eng Chem Res 40:2474–2484CrossRefGoogle Scholar
  19. 19.
    Lee K, Ren Z, Huang B (2008) Novel closed-loop stiction detection and quantification method via system identification. In: ADCONIP conference, Jasper, Canada, 4–7 May 2008Google Scholar
  20. 20.
    Lo CH, Wong YK, Rad AB (2004) Model-based fault diagnosis in continuous dynamic systems. ISA Trans 43:459–475CrossRefGoogle Scholar
  21. 21.
    Mjaavatten A, Foss BA (1997) A modular system for estimation and diagnosis. Comput Chem Eng 21(11):1203–1218CrossRefGoogle Scholar
  22. 22.
    Morison D, Foslien W, MacArthur W, Jofriet P (2006) The early event detection toolkit. Available from: http://hpsweb.honeywell.com/NR/rdonlyres/9998BC23-0175-4937-AA20D86772E52E5B/15009/EarlyEventDetectionToolkitWhitePaper.pdf. Accessed 30 Oct 2010
  23. 23.
    Power Y, Narozny JA, Barnfield A (2009) Intelligent asset performance management of a uranium solvent extraction circuit. In: IFACMMM 2009, IFAC workshop on mining, mineral and metal industry, vina del Mar, Chile, 14–16 Oct 2009Google Scholar
  24. 24.
    Pozo Garcia O, Myller T, Kulomaa T, Hämäläinen V, Jämsä-Jounela SL (2011) An application of shape-based stiction detection in critical valves of a board machine. In: 1st Papyrus workshop on fault diagnosis and fault-tolerant control, Porticcio, France, 6–7 Oct 2011Google Scholar
  25. 25.
    Prasad P, Davis J, Jiranpinyo Y, Josephson J, Bhalodia M (1998) Structuring diagnostic knowledge for large-scale process systems. Comput Chem Eng 22(12):1897–1905CrossRefGoogle Scholar
  26. 26.
    Sourander M, Vermasvuori M, Sauter D, Liikala T, Jämsä-Jounela SL (2008) Fault tolerant control for a dearomatisation process. J Process Control 19(7):1091–1102CrossRefGoogle Scholar
  27. 27.
    Sundholm P (2000) Mill operations in production of main paper and board grades. In: Paulapuro H (ed) Papermaking part 1, stock preparation and wet end, FAPET Oy, pp 12–55Google Scholar
  28. 28.
    Thornhill NF, Horch A (2007) Advances and new directions in plant-wide disturbance detection and diagnosis. Control Eng Pract 15:1196–1206CrossRefGoogle Scholar
  29. 29.
    Tikkala VM, Jämsä-Jounela SL (2012) Monitoring of caliper sensor fouling in a board machine using self-organizing maps. Expert Syst Appl 39(12):11,228–11,233CrossRefGoogle Scholar
  30. 30.
    Vedam H, Venkatasubramanian V (1999) Pca-sdg based process monitoring and fault diagnosis. Control Eng Pract 7:903–917CrossRefGoogle Scholar
  31. 31.
    Venkatasubramanian V (2010) Systemic risks management in complex process plants: challenges, opportunities and emerging trends. In: Conference on control and fault tolerant systems, Nice, France, 6–8 Oct 2010Google Scholar
  32. 32.
    Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis, part I: quantitative model-based methods. Comput Chem Eng 27:293–311CrossRefGoogle Scholar
  33. 33.
    Venkatasubramanian V, Rengaswamy R, Kavuri SN (2003) A review of process fault detection and diagnosis, part II: qualitative models and search strategies. Comput Chem Eng 27:313–326CrossRefGoogle Scholar
  34. 34.
    Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K (2003) A review of process fault detection and diagnosis, part III: process history based methods. Comput Chem Eng 27:327–346CrossRefGoogle Scholar
  35. 35.
    Zakharov A (2011) A method for detecting faults or controlling and/or optimizing of an industrial process or a part of it. Finnish Patent Application 20116321 (submitted)Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Sirkka-Liisa Jämsä-Jounela
    • 1
  • Vesa-Matti Tikkala
    • 1
  • Alexey Zakharov
    • 1
  • Octavio Pozo Garcia
    • 1
  • Helena Laavi
    • 1
  • Tommi Myller
    • 2
  • Tomi Kulomaa
    • 2
  • Veikko Hämäläinen
    • 3
  1. 1.Department of Biotechnology and Chemical TechnologyAalto UniversityAaltoFinland
  2. 2.Stora Enso OyjImatra MillsImatraFinland
  3. 3.Efora OyImatraFinland

Personalised recommendations