Advertisement

An analytical model of rotary ultrasonic milling

  • Erich BertscheEmail author
  • Kornel EhmannEmail author
  • Kostyantyn MalukhinEmail author
ORIGINAL ARTICLE

Abstract

Rotary ultrasonic machining is currently being used as a manufacturing method for advanced ceramic materials, but its complexity has hindered its acceptance in industry. For this technology to gain wider acceptance, it must first be scientifically better understood. The majority of published rotary ultrasonic machining (RUM) papers studied the effect of RUM process parameters on machining performance and removal mechanisms for drilling of circular holes. In industries such as aerospace, the production of advanced turbine components requires machining of complex 3D features using milling strategies. The objective of this paper will be to present a new physical model based on rotary ultrasonic milling which will help provide a better scientific understanding of the process. This will be accomplished by first modeling the macro kinematics between the tool and material followed by the modeling of micro kinematics between the individual diamond grains and the material. In addition, a force model for predicting machining process forces will also be introduced and validated based on a set of experiments. The physical models will help determine the relationships between input parameters, cutting parameters, and process output parameters for rotary ultrasonic milling.

Keywords

Rotary ultrasonic milling Advanced ceramics Surface finish Theoretical cutting forces Experimental verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brinksmeier E, Aurich JC, Govekar E, Heinzela C, Hoffmeister H-W, Klocke F, Peters J, Rentsch R, Stephensong DJ, Uhlmannh E, Weinerti K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Manuf Technol 55(2):667–696CrossRefGoogle Scholar
  2. 2.
    Marinescu ID, Hitchiner M, Uhlmann E, Rowe WB, Inasaki I (2006) Handbook of machining with grinding wheels. CRC Press, Boca RatonCrossRefGoogle Scholar
  3. 3.
    Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tool Manuf 38(4):239–255CrossRefGoogle Scholar
  4. 4.
    Bender BG (1966) Method of making semiconductor devices. USA Patent 3229348, Hughes Aircraft Company, United StatesGoogle Scholar
  5. 5.
    Singh R, Khamba JS (2007) Investigation for ultrasonic machining of titanium and its alloys. J Mater Process Technol 183(2–3):363–367CrossRefGoogle Scholar
  6. 6.
    Dvivedi A, Kumar P (2007) Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int J Adv Manuf Technol 34(1):131–140CrossRefGoogle Scholar
  7. 7.
    Komaraiah M, Reddy PN (1991) Rotary ultrasonic machining—a new cutting process and its performance. Int J Prod Res 29(11):2177–2187zbMATHCrossRefGoogle Scholar
  8. 8.
    Prabhakar D (1992) Machining of advanced ceramic materials using rotary ultrasonic machining process. University of Illinois at Urbana-Champaign, ChampaignGoogle Scholar
  9. 9.
    Uhlmann E, Spur G (1998) Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance. CIRP Ann Manuf Technol 47(1):249–252CrossRefGoogle Scholar
  10. 10.
    Spur G, Uhlmann E, Holl S-E, Daus NA (1999) Influences on surface and subsurface during ultrasonic assisted grinding of advanced ceramics. Proceedings of the 14th Annual Meeting, the American Society for Precision Engineering. Monterey, CA, USAGoogle Scholar
  11. 11.
    Zhang P, Fan X, Miller MH (2004) Improving grinding wheel performance with vibration assistance and segmented wheels. Proceedings of the 2004 NSF Design, Service and Manufacturing Grantees and Research ConferenceGoogle Scholar
  12. 12.
    Spurr G, Holl SE (1996) Ultrasonic assisted grinding of ceramics. J Mater Process Technol 62(4):287–293CrossRefGoogle Scholar
  13. 13.
    Hu P, Zhang JM, Treadwell C (2002) Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J Mater Process Technol 129(1–3):339–344CrossRefGoogle Scholar
  14. 14.
    Daus N-A (2004) Ultraschallunterstütztes Quer-Seiten-Schleifen Berichte aus dem Produktionstechnischen Zentrum. Fraunhofer IRB Verlag, BerlinGoogle Scholar
  15. 15.
    Hocheng H, Tai NH, Liu CS (2000) Assessment of ultrasonic drilling of C/SiC composite material. Compos A Appl Sci Manuf 31(2):133–142CrossRefGoogle Scholar
  16. 16.
    Li ZC, Jiao Y, Deines TW, Pei ZJ, Treadwell C (2005) Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments. Int J Mach Tool Manuf 45(12–13):1402–1411CrossRefGoogle Scholar
  17. 17.
    Jianxin D, Taichiu L (2002) Ultrasonic machining of alumina-based ceramic composites. J Eur Ceram Soc 22(8):1235–1241CrossRefGoogle Scholar
  18. 18.
    Li ZC, Pei ZJ, Sisco T, Micale AC, Treadwell C (2007) Experimental study on rotary ultrasonic machining of graphite/epoxy panel. Proceedings of ASPE Spring Topical MeetingGoogle Scholar
  19. 19.
    Jiao Y, Liu WJ, Pei ZJ (2005) Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis. J Manuf Sci Eng 127(4):752–758CrossRefGoogle Scholar
  20. 20.
    Churi NJ, Pei ZJ, Treadwell C (2006) Rotary ultrasonic machining of titanium alloy: effects of machining variables. Mach Sci Technol 10:301–321CrossRefGoogle Scholar
  21. 21.
    Neugebauer R, Stoll A (2004) Ultrasonic application in drilling. J Mater Process Technol 149(1–3):633–639CrossRefGoogle Scholar
  22. 22.
    Pei ZJ, Prabhakar D, Ferreira PM (1995) A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. Trans ASME J Eng Ind 117(2):142–151CrossRefGoogle Scholar
  23. 23.
    Pei ZJ, Ferreira PM, Haselkorn M (1995) Plastic flow in rotary ultrasonic machining of ceramics. J Mater Process Technol 48(1–4):771–777CrossRefGoogle Scholar
  24. 24.
    Pei ZJ, Ferreira PM (1998) Modeling of ductile-mode material removal in rotary ultrasonic machining. Int J Mach Tool Manuf 38(10–11):1399–1418CrossRefGoogle Scholar
  25. 25.
    Pei ZJ, Ferreira PM, Kapoor SG, Haselkorn M (1995) Rotary ultrasonic machining for face milling of ceramics. Int J Mach Tool Manuf 35(7):1033–1046CrossRefGoogle Scholar
  26. 26.
    Pei ZJ, Ferreira PM (1999) An experimental investigation of rotary ultrasonic face milling. Int J Mach Tool Manuf 39(8):1327–1344CrossRefGoogle Scholar
  27. 27.
    Uhlmann E, Daus N (2000) Ultrasonic assisted face grinding and cross-periphal grinding of ceramics. Proceedings of the 7th International Symposium Ceramics Materials and Components for EnginesGoogle Scholar
  28. 28.
    Sauer H (2004) Tool with an oscillating head, US Patent Application 20080041604Google Scholar
  29. 29.
    Meyer J (2009) Ultrasonic machining improves productivity. Manufacturing EngineeringGoogle Scholar
  30. 30.
    Fritsch A (1997) Schleifen von cermets. University of HannoverGoogle Scholar
  31. 31.
    Malkin S (1989) Grinding technology: theory and applications of machining with abrasives. American Society of Manufacturing Engineers, DearbornGoogle Scholar
  32. 32.
    Toenshoff HK (1995) Spanen-Grundlagen. Springer, BerlinGoogle Scholar
  33. 33.
    Prospect WC (2002) Diamantwerkzeuge zur Bearbeitung feinoptischer, brillen optischer und technischer BauelementeGoogle Scholar
  34. 34.
    Collins JA (1981) Failure of materials in mechanical design. Wiley, New YorkGoogle Scholar
  35. 35.
    Corman GS, Luthra KL (2005) Silicon melt infiltrated ceramic composites (HiPerComp™). In: Handbook of ceramic composites. Springer, New York, pp. 99–115Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Bertsche Engineering Corp.Buffalo GroveUSA
  2. 2.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations