Effects of process parameters on the mechanical properties and morphology of stitched and non-stitched carbon/epoxy liquid resin-infused NCF laminate, out of autoclave and out of oven

  • Alvine Njionhou
  • Florentin Berthet
  • Bruno Castanié


The effects of resin infusion process parameters on the mechanical properties of stitched or non-stitched composite laminates out of autoclave were studied using the design of experiment method. This method was chosen due to the complexity of the problem. The preforms used were laminates of multi-axial quasi-isotropic non-crimp fabric (NCF), either stitched or non-stitched. A literature review identified nine parameters as the key design-of-experiment factors: sewing; the number of NCFs; the number of high-porous media; the interaction between the number of NCFs and the number of high-porous media; the mould temperature, injection temperature and cure temperature; the position of the preform; and, finally, the vacuum level. The mechanical properties studied and the morphological analysis carried out concerned the resistance in tension, compression and shear, the glass transition temperature, the thickness of the finished laminate, and the fibre volume fraction and porosity. The study revealed the best suited manufacturing conditions.


Resin transfer moulding (RTM) Carbon fibres Mechanical properties Porosity Voids Liquid resin infusion Probabilistic method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takeda F, Nishiyama S, Hayashi K and al., Research in the application of the VaRTM technique to the fabrication of primary aircraft composite structures. Mitsubishi Heavy Industries, Technical Review Vol. 42 (No. 5), 2005. Accessed 10 May 2012
  2. 2.
    Beckwith SW (2006) Resin infusion liquid molding vacuum infusion processing numerous other names. An alphabet soup of expanding technologies. SAMPE Journal 42(1):4Google Scholar
  3. 3.
    Teemer L, Okoli O, Liang Z (2006) The effect of processing parameters on the mechanical properties of components manufactured using the resin infusion between double flexible tooling process. SAMPE ’06 Long Beach 51:9Google Scholar
  4. 4.
    Mattsson D, Joffe R, Varna J (2007) Methodology for characterization of internal structure parameters governing performance in NCF composites. Compos Part B: Eng 38(1):44–57Google Scholar
  5. 5.
    Lundström (2000) The permeability of non-crimp stitched fabrics. Compos Part A: Appl Sci Manuf 31(12):1345–1353CrossRefGoogle Scholar
  6. 6.
    Timms, Mulchandani, Govignon Q and Bickerton S (2008) Identifying sources of variability in the mechanical performance of resin infused textile composites. The 9th international conference on textile composites (TexComp9), Newark, DEGoogle Scholar
  7. 7.
    Dransfield K, Baillie C, Mai YW (1994) Improving the delamination resistance of CFRP by stitching—a review. Compos Sci Technol 50(3):305–317CrossRefGoogle Scholar
  8. 8.
    Govignon Q, Bickerton S, Morris J et al (2008) Full field monitoring of the resin flow and laminate properties during the resin infusion process. Compos Part A: Appl Sci Manuf 39:1412–1426CrossRefGoogle Scholar
  9. 9.
    Olivier P, Cottu JP, Ferret B (1995) Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates. Composites 26(7):509–515CrossRefGoogle Scholar
  10. 10.
    Ruiz, Achim EV et al (2006) Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Compos Sci Technol 66(3–4):475–486CrossRefGoogle Scholar
  11. 11.
    Breard J, Saouab A, Bouquet G (2003) Numerical simulation of void formation in LCM. Compos Part A: Appl Sci Manuf 34(6):517–523Google Scholar
  12. 12.
    Lawrence, Neacsu V, Advani S (2009) Modeling the impact of capillary pressure and air entrapment on fibre tow saturation during resin infusion in LCM. Compos Part A: Appl Sci Manuf 40(8):1053–1064CrossRefGoogle Scholar
  13. 13.
    Ledru Y, Bernhart G, Piquet R, Schmidt F, Michel L (2010) Coupled visco-mechanical and diffusion void growth modelling during composite curing. Compos Sci Technol 70(15):2139–2145CrossRefGoogle Scholar
  14. 14.
    Berthet F (2008) Calcul et expériences sur le profil du front de résine en infusion. Rev Compos Matér Avancés 18(3):375–391CrossRefGoogle Scholar
  15. 15.
    Sutherland LS, Shenoi RA, Lewis SM (1999) Size and scale effects in composites: II. Unidirectional laminates. Compos Sci Technol 59:221–233CrossRefGoogle Scholar
  16. 16.
    Nakouzi S, Pancrace J, Schmidt F et al (2011) Simulations of an infrared composite curing process. Adv Eng Mater 13(7 and SI):604–608. doi: 10.1002/adem.201000344 CrossRefGoogle Scholar
  17. 17.
    Yenilmez B, Senan M, Sozer EM (2008) Variation of part thickness and compaction pressure in vacuum infusion process. Compos Sci Technol 69(11-12):28Google Scholar
  18. 18.
    Donadon MV, Iannucci L, Falzon BG et al (2007) Intralaminar toughness characterisation of unbalanced hybrid plain weave laminates. Compos Part A: Appl Sci Manuf 38(6):1597–1611CrossRefGoogle Scholar
  19. 19.
    Klunker F, Aranda S, Ziegmann G et al. (2008) Permeability and compaction models for non crimped fabrics to perform 3D filling simulations of vacuum assisted resin infusion. The 9th International Conference on Flow Processes In Composite Materials, Montréal (Québec), CanadaGoogle Scholar
  20. 20.
    Chang SH, Hwang JR, Doong JL (2008) Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using grey relational analysis. J Mater Process Technol 97(1-3):186–193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Alvine Njionhou
    • 1
  • Florentin Berthet
    • 1
  • Bruno Castanié
    • 2
  1. 1.Université de Toulouse, Mines d’Albi, INSA, UPS, ISAE ICA (Institut Clément Ader)Albi cedexFrance
  2. 2.Université de Toulouse, INSA, Mines d’Albi, UPS, ISAE, ICA (Institut Clément Ader)Toulouse CedexFrance

Personalised recommendations