Advertisement

Active spindle system for a rotary planing machine

  • P. Albertelli
  • S. Elmas
  • M. R. Jackson
  • G. Bianchi
  • R. M. Parkin
  • M. Monno
ORIGINAL ARTICLE

Abstract

This paper presents the experimental validation of an active control approach to improve the damping of a spindle system for wood machining. The active control was implemented using piezoelectric actuators in push–pull configuration with real-time control capabilities. The adaptive control strategy based on the linear quadratic Gaussian is first modeled within MATLAB/Simulink and then implemented on the real spindle system. Experimental tests were performed on the small-scale planer prototype to validate the simulation models. Moreover a cutting force observer which can be used to continuously monitor the cutting process is also implemented and its performance is presented.

Keywords

Active vibration control Spindle modeling Mechatronics Wood working Planing machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Annals–Manufacturing. Technology 53(2):619–642Google Scholar
  2. 2.
    Brecher C, Essera M, Witta S (2009) Interaction of manufacturing process and machine tool. CIRP Annals–Manufacturing. Technology 58(2):588–607Google Scholar
  3. 3.
    Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Annals–Manufacturing. Technology 59(2):781–802Google Scholar
  4. 4.
    Hynek P (2004) Wood surface form improvement by real time displacement of tool trajectory. Ph.D. Thesis, Loughborough University, EnglandGoogle Scholar
  5. 5.
    Parkin RM, Jackson MR (1996) Mechatronic approach for analyzing timber surfaces. Math Comput Simul 41(5–6):445–450CrossRefGoogle Scholar
  6. 6.
    Jackson MR, Parkin RM, Brown N (2002) Waves on wood. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 216(4):475–497CrossRefGoogle Scholar
  7. 7.
    Sims WL (1985) Two Hundred Years of history and evolution of woodworking machinery. Walders, EnglandGoogle Scholar
  8. 8.
    Chen Y, Wang XG, Sun C, Devine F, De Silva CV (2003) Active vibration control with state feedback in woodcutting. J Vib Control 9(6):645–664CrossRefGoogle Scholar
  9. 9.
    Lin RR, Palazzolo AB, Kascak AF, Montague GT (1993) Electromechanical simulation and testing of actively controlled rotor dynamic systems with piezoelectric actuators. Journal of Engineering for Gas Turbines and Power, Transactions of the ASME 115:324–335CrossRefGoogle Scholar
  10. 10.
    Barrett TS, Palazzolo AB, Kascak AF (1995) Active vibration control of rotating machinery using piezoelectric actuators incorporating flexible casing effects. Journal of Engineering for Gas Turbines and Power Transactions of the ASME 117:176–187CrossRefGoogle Scholar
  11. 11.
    Simoes R, Steffen VJ, Hagopian JD, Mahfoud J (2007) Modal active vibration control of a rotor using piezoelectric stack actuators. J Vib Control 13(1):45–64zbMATHCrossRefGoogle Scholar
  12. 12.
    Dohner JL, Lauffer JP, Hinnerichs TD, Shankar N, Regelbrugge ME, Kwan CM, Xu R, Winterbauer B, Bridger K (2004) Mitigation of chatter instabilities in milling by active structural control. Journal of Sound and Vibration 269(1–2):197–211CrossRefGoogle Scholar
  13. 13.
    Cao Y, Altintas Y (2007) Modeling of spindle bearing and machine tool systems for virtual simulation of milling operations. Int J Mach Tool Manuf 47(9):342–1350CrossRefGoogle Scholar
  14. 14.
    Kolar P, Sulitka M, Janota M (2010) Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame. Int J Adv Manuf Technol 54(1–4):11–20Google Scholar
  15. 15.
    Devos S (2006) Development of fast, stiff and high-resolution piezoelectric motors with integrated bearing-driving functionality. PhD thesis, KU LeuvenGoogle Scholar
  16. 16.
    Ewins DJ (2000) Modal testing, theory practice and application, 2nd edn. Research Studies, EnglandGoogle Scholar
  17. 17.
    Albertelli P, Cau N, Bianchi G, Monno M (2011) The effect of dynamic interaction between machine tool subsystems on cutting process stability. Int J Adv Manuf Technol. doi: 10.1007/s00170-011-3465-5
  18. 18.
    Bolzernm P, Scattolini R, Schiavoni N (2008) Fondamenti di controlli automatici, 3rd edn. McGraw-Hill, ItalyGoogle Scholar
  19. 19.
    Preumont A (2002) Vibration control of active structures, an introduction, 2nd edn. Kluwer, DordretchzbMATHGoogle Scholar
  20. 20.
    Huang S, Tan KK, Hong GS, Wong YS (2007) Cutting force control of milling machine. Mechatronics 17(10):533–541CrossRefGoogle Scholar
  21. 21.
    Altintas Y, Park SS (2004) Dynamic Compensation of Spindle Integrated Force Sensors. CIRP Annals–Manufacturing. Technology 53(1):305–308Google Scholar
  22. 22.
    Albrecht A, Park SS, Altintas Y, Pritschow G (2005) High frequency bandwidth cutting force measurements in milling using capacitance displacement sensors. International Journal of Machine Tool and Manufacture 45(9):993–1008CrossRefGoogle Scholar
  23. 23.
    Farrar CR, Doebling SW, Cornwell PJ (1998) A comparison study of modal parameter confidence intervals computed using the monte carlo and bootstrap techniques. Proceedings of 16th IMAC, Santa Barbara, California:936-944Google Scholar
  24. 24.
    Ho CC, Ma CK (2007) Active vibration control of structural systems by a combination of linear quadratic Gaussian and input estimation approaches. Journal of Sound and Vibration 301(3–5):429–449MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • P. Albertelli
    • 1
  • S. Elmas
    • 2
  • M. R. Jackson
    • 2
  • G. Bianchi
    • 3
  • R. M. Parkin
    • 2
  • M. Monno
    • 4
  1. 1.Department of Mechanical EngineeringPolitecnico of MilanPiacenzaItaly
  2. 2.Department Mechanical and Manufacturing Engineering (MRG)Loughborough UniversityLeicestershireUK
  3. 3.Institute of Industrial Technology and Automation–CNRMilanItaly
  4. 4.Politecnico di Milano (MUSP Lab.)MilanoItaly

Personalised recommendations