Optimal design of machines processing pipeline parts

  • Olga BattaïaEmail author
  • Alexandre Dolgui
  • Nikolai Guschinsky
  • Genrikh Levin
Original Article


Pipelines are widely used in transport systems and public utilities and infrastructures. To produce their components, specially designed multi-positional machines are employed. Since the cost of the equipment used affects the cost of final pipelines, the design of such machines is an important financial issue. This paper presents such a design problem formulated as a combinatorial optimization problem. Two mathematical models and an efficient solution approach are suggested. Industrial examples are also considered in order to demonstrate the use of the method developed.


Pipelines Multi-positional machines Design Line-balancing techniques Shortest path 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cafaro D, Cerdá J (2008) Dynamic scheduling of multiproduct pipelines with multiple delivery due dates. Comput Chem Eng 32(4–5):728–753CrossRefGoogle Scholar
  2. 2.
    Orban-Mihalyko E, Lakatos B (2005) Sizing of pipeline capacities in processing systems under stochastic operation conditions. Comput Chem Eng 29(7):1599–1612CrossRefGoogle Scholar
  3. 3.
    Chebouba A, Yalaoui F, Smati A, Amodeo L, Younsi K, Tairi A (2009) Optimization of natural gas pipeline transportation using ant colony optimization. Comput Oper Res 36(6):1916–1923zbMATHCrossRefGoogle Scholar
  4. 4.
    Usubamatov R, Abdulmuin M, Nor A, Murad M (2008) Productivity rate of rotor-type automated lines and optimization of their structure. Proc Inst Mech Eng B J Eng Manuf 222(11):1561–1566CrossRefGoogle Scholar
  5. 5.
    Battini D, Faccio M, Ferrari E, Persona A, Sgarbossa F (2007) Design configuration for a mixed-model assembly system in case of low product demand. Int J Adv Manuf Technol 34(1):188–200CrossRefGoogle Scholar
  6. 6.
    Dolgui A, Guschinsky N, Levin G (2009) Graph approach for optimal design of transfer machine with rotary table. Int J Prod Res 47(2):321–341MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wu B, Young G, Huang T (2000) Application of a two-level optimization process to conceptual structural design of a machine tool. Int J Mach Tools Manuf 40(6):783–794CrossRefGoogle Scholar
  8. 8.
    Xu L, Li Z, Li S, Tang F (2005) A polychromatic sets approach to the conceptual design of machine tools. Int J Prod Res 43(12):2397–2421zbMATHCrossRefGoogle Scholar
  9. 9.
    Contini P, Tolio T (2004) Computer-aided set-up planning for machining centres configuration. Int J Prod Res 42(17):3473–3491CrossRefGoogle Scholar
  10. 10.
    Koren Y, Heisel U, Jovane F, Moriwaki T, Pritchow G, Brussel HV, Ulsoy A (1999) Reconfigurable manufacturing systems. CIRP Ann 48(2):527–598CrossRefGoogle Scholar
  11. 11.
    Mehrabi M, Ulsoy A, Koren Y (2000) Reconfigurable manufacturing systems: key to future manufacturing. J Intell Manuf 11:403–419CrossRefGoogle Scholar
  12. 12.
    Mehrabi M, Ulsoy A, Koren Y, Heytler P (2002) Trends and perspectives in flexible and reconfigurable manufacturing systems. J Intell Manuf 13:135–146CrossRefGoogle Scholar
  13. 13.
    Abdi M, Labib A (2003) A design strategy for reconfigurable manufacturing systems (RMSs) using analytical hierarchical process (AHP): a case study. Int J Prod Res 41(10):2273–2299CrossRefGoogle Scholar
  14. 14.
    Youssef A, ElMaraghy H (2008) Availability consideration in the optimal selection of multiple-aspect RMS configurations. Int J Prod Res 46(21):5849–5882zbMATHCrossRefGoogle Scholar
  15. 15.
    Liu W, Liang M (2008) Multi-objective design optimization of reconfigurable machine tools: a modified fuzzy-Chebyshev programming approach. Int J Prod Res 46(6):1587–1618zbMATHCrossRefGoogle Scholar
  16. 16.
    Guschinskaya O, Dolgui A, Guschinsky N, Levin G (2007) A scheduling problem for multi-spindle head machines with a mobile table. Comput Oper Res 36(2):344–357MathSciNetCrossRefGoogle Scholar
  17. 17.
    Guschinskaya O, Dolgui A (2009) A comprehensive comparative analysis of exact and heuristic methods for transfer line balancing problems. Int J Prod Econ 120(2):276–286MathSciNetCrossRefGoogle Scholar
  18. 18.
    Essafi M, Delorme X, Dolgui A, Guschinskaya O (2010) A MIP approach for balancing transfer lines with complex industrial constraints. Comput Ind Eng 58(3):393–400CrossRefGoogle Scholar
  19. 19.
    Guschinskaya O, Gurevsky E, Dolgui A, Eremeev A (2011) Metaheuristic approaches for the design of machining lines. Int J Adv Manuf Technol 55(1):11–22CrossRefGoogle Scholar
  20. 20.
    Hitomi K (1996) Manufacturing systems engineering. Taylor & Francis. LondonGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Olga Battaïa
    • 1
    Email author
  • Alexandre Dolgui
    • 1
  • Nikolai Guschinsky
    • 2
  • Genrikh Levin
    • 2
  1. 1.École des Mines de Saint-ÉtienneSaint-ÉtienneFrance
  2. 2.United Institute of Informatics Problems of the National Academy of SciencesMinskBelarus

Personalised recommendations