High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process

ORIGINAL ARTICLE

Abstract

Type-2 fuzzy logic systems (FLSs) are gaining in popularity because of their capacity to handle rule uncertainties in a more complete way. Moreover, higher-order interval type-2 (IT2) FLS can reduce drastically the number of rules needed to perform the approximation and improve transparency and interpretation in many high-dimensional systems. This paper presents architecture and inference engine of generalized IT2 Takagi-Sugeno-Kang (TSK) FLS and the design method of higher-order IT2 FLS. An experimental acoustic emission (AE) signal modeling using a second-order IT2 TSK FLS in turning process is given to demonstrate the differences between the first-order and second-order IT2 FLSs and the advantage and efficiency of high-order IT2 FLS. The estimation of uncertainty of AE could be of great value to a decision maker and used to investigate tool wear condition during the machining process.

Keyword

Type-2 fuzzy logic system High order Fuzzy modeling Acoustic emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Zadeh LA (1975) The conception of a linguistic variable and its application in approximate reasoning–I. Inf Sci 8:199–249MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Mimmato M, Tanaka K (1976) Some properties of fuzzy sets of type-2. Inf Control 31:312–340CrossRefGoogle Scholar
  4. 4.
    Yager RR (1980) Fuzzy subset of type-II in discussion. J Cybern 10:137–159MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mimmato M, Tanaka K (1981) Fuzzy sets of type-2 under algebraic product and algebraic sum. Fuzzy Set Syst 5:277–290CrossRefGoogle Scholar
  6. 6.
    Dubais D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic, New YorkGoogle Scholar
  7. 7.
    Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inf Sci 132:195–220MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Karnik NN, Mendel JM (2001) Operations on type-2 fuzzy sets. Fuzzy Set Syst 122(2):327–348MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Karnik NN, Mendel JM, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7:643–658CrossRefGoogle Scholar
  10. 10.
    Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8:535–550CrossRefGoogle Scholar
  11. 11.
    Mendel JM, John RI (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127CrossRefGoogle Scholar
  12. 12.
    Mendel JM (2001) Uncertain rule-based fuzzy logic systems—introduction on new directions. Prentice hall PTR, Upper Saddle RiverGoogle Scholar
  13. 13.
    Liang Q, Mendel JM (1999) An introduction to type-2 TSK fuzzy logic systems. In: 1999 IEEE International Fuzzy Systems Conference Processing, Seoul, KoreaGoogle Scholar
  14. 14.
    Dereli T, Baykasoglu A, Altun K, Durmusoglu A, Turksen B (2010) Industrial applications of type-2 fuzzy sets and systems: a concise review. Comput Ind 62(2):125–137CrossRefGoogle Scholar
  15. 15.
    Bellman R (1961) Adaptive control processes: a guide tour. Princeton University Press, PrincetonGoogle Scholar
  16. 16.
    Ren Q, Baron L, Balazinski M (2008) High order type-2 fuzzy logic system. In: The 27th North American Fuzzy Information Processing Society Annual Conference, New York, United StatesGoogle Scholar
  17. 17.
    Demirli K, Muthukumaran P (2000) Higher order fuzzy system identification using subtractive clustering. J Intell Fuzzy Syst 9:129–158Google Scholar
  18. 18.
    Buckley JJ (1993) Sugeno-type controllers are universal controllers. Fuzzy Set Syst 53:299–303MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Ren Q, Baron L, Balazinski M (2006) Type-2 Takagi-Sugeno-Kang fuzzy logic modelling using subtractive clustering. In: The 25th North American Fuzzy Information Processing Society Annual Conference, Montreal, CanadaGoogle Scholar
  20. 20.
    Ren Q, Baron L, Balazinski M, Jemielniak K (2011) TSK fuzzy modeling for tool wear condition in turning processes: an experimental study. Eng Appl Artif Intel 24(2):260–265CrossRefGoogle Scholar
  21. 21.
    Ren Q, Baron L, Balazinski M (2011) Fuzzy identification of cutting acoustic emission with extended subtractive cluster analysis. Nonlinear Dynam. doi:10.1007/s11071-011-0173-5
  22. 22.
    Ren Q, Baron L, Balazinski M (2009) Application of type-2 fuzzy estimation on uncertainty in machining: an approach on acoustic emission during turning process. In: The 28th North American Fuzzy Information Processing Society Annual Conference, Cincinnati, Ohio, USAGoogle Scholar
  23. 23.
    Ren Q, Baron L, Balazinski M (2011) Type-2 fuzzy modeling for acoustic emission signal in precision manufacturing. Model Simulat Eng (696947) doi:10.1155/2011/696947

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringÉcole Polytechnique de MontréalMontrealCanada

Personalised recommendations