Composite fabrication using friction stir processing—a review



Composite manufacturing is one of the most imperative advances in the history of materials. Nanoparticles have been attracting increasing attention in the composite community because of their capability of improving the mechanical and physical properties of traditional fiber-reinforced composites. Friction stir processing (FSP) has successfully evolved as an alternative technique of fabricating metal matrix composites. The FSP technology has recently shown a significant presence in generation of ex situ and in situ nanocomposites. This review article essentially describes the current status of the FSP technology in the field of composite fabrication with the main impetus on aluminum and magnesium alloys.


Friction stir processing Nanocomposites Aluminum and magnesium alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zweben C (2002) Metal matrix composites, ceramic matrix composites, carbon matrix composites and thermally conductive polymers matrix composites. In: Harper CA (ed) Handbook of plastics, elastomers, and composites, 4th edn. McGraw Hill, New York, p 321Google Scholar
  2. 2.
    Mangalgiri PD (1999) Composite materials for aerospace applications. J Bull Mater Sci 22(3):657–664CrossRefGoogle Scholar
  3. 3.
    Lloyd DJ (1994) Int Mater Rev 39:1–23CrossRefGoogle Scholar
  4. 4.
    Tjong SC, Ma ZY (2000) Mater Sci Eng R 29:49–113CrossRefGoogle Scholar
  5. 5.
    Thomas WM, Nicholas ED, Needham JC, Church MG, Templesmith P, Dawes CJ (1991) The Welding Institute, TWI, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8Google Scholar
  6. 6.
    Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK (2000) Scr Mater 42:163–168CrossRefGoogle Scholar
  7. 7.
    Ma ZY, Mishra RS, Mahoney MW (2002) Acta Mater 50:4419–4430CrossRefGoogle Scholar
  8. 8.
    Kwon YJ, Shigematsu I, Saito N (2003) Scr Mater 49:785–789CrossRefGoogle Scholar
  9. 9.
    Rhodes CG, Mahoney MW, Bingel WH, Spurling RA, Bampton CC (1997) Scr Mater 36:69–75CrossRefGoogle Scholar
  10. 10.
    Chang CI, Lee CJ, Huang JC (2004) Scr Mater 51:509–514CrossRefGoogle Scholar
  11. 11.
    Su JQ, Nelson TW, Sterling CJ (2003) J Mater Res 18:1757–1760CrossRefGoogle Scholar
  12. 12.
    Saravanan RA, Surappa MK (2000) Mater Sci Eng, A 276:108–116CrossRefGoogle Scholar
  13. 13.
    Hu L, Wang E (2000) Mater Sci Eng, A 278:267–271CrossRefGoogle Scholar
  14. 14.
    Han BQ, Dunand DC (2000) Mater Sci Eng, A 277:297–304CrossRefGoogle Scholar
  15. 15.
    Lee DM, Suh BK, Kim BG, Lee JS, Lee CH (1997) Mater Sci Technol 13:590–595CrossRefGoogle Scholar
  16. 16.
    Mishra RS, Ma ZY (2005) Mater Sci Eng R 50:1–78MATHCrossRefGoogle Scholar
  17. 17.
    Hsu CJ, Kao PW, Ho NJ (2005) Scr Mater 53:341–345CrossRefGoogle Scholar
  18. 18.
    Lee IS, Kao PW, Ho NJ (2008) Intermetallic 16:1104–1108CrossRefGoogle Scholar
  19. 19.
    Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. 20.
    El-Danaf EA, El-Rayes MM, Soliman SM (2010) Friction stir processing: an effective technique to refine grain structure and enhance ductility. Mater Des 31:1231–1236CrossRefGoogle Scholar
  21. 21.
    Wang W, Shi Q, Liu P, Li H, Li T (2009) A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. J Mater Process Technol 209:2099–2103CrossRefGoogle Scholar
  22. 22.
    Lim DK, Shibayanagi T, Gerlicha AP (2009) Synthesis of multi-walled CNT reinforced aluminum alloy composite via friction stir processing. Mater Sci Eng, A 507:194–199CrossRefGoogle Scholar
  23. 23.
    Ke L, Huang C, Xing Li, Huang K Al–Ni intermetallic composites produced in situ by friction stir processing. J. of Alloys and Compounds 503(2):494–499Google Scholar
  24. 24.
    Dixit M, Newkirk WJ, Mishra RS (2007) Properties of friction stir-processed Al 1100–NiTi composite. Scr Mater 56:541–544CrossRefGoogle Scholar
  25. 25.
    Asadi P, Faraji G, Besharati MK (2010) Producing of AZ91/SiC composite by friction stir processing. Int J Adv Manuf Technol 51:247–260CrossRefGoogle Scholar
  26. 26.
    Mahmouda ERI, Takahashi M, Shibayanagi T, Ikeuchi K (2010) Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear 268:1111–1121CrossRefGoogle Scholar
  27. 27.
    Alidokht SA, Abdollah-zadeh A, Soleymani S, Assadi H (2011) Microstructure and tribological performance of an aluminum alloy based hybrid composite produced by friction stir processing. Mater Des 32:2727–2733CrossRefGoogle Scholar
  28. 28.
    Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer Compos 25(6):630–645CrossRefGoogle Scholar
  29. 29.
    Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRefGoogle Scholar
  30. 30.
    Lau KT, Hui D (2002) The revolutionary creation of new advanced materials—carbon nano-tube composites. Compos Part B Eng 33(4):263–277CrossRefGoogle Scholar
  31. 31.
    Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A Appl Sci Manuf 36(11):1525–1535CrossRefGoogle Scholar
  32. 32.
    Gou J, Braint SO, Gu H, Song G (2006) Damping augmentation of nanocomposites using carbon nanofiber paper. J Nanomater 2006:1–7CrossRefGoogle Scholar
  33. 33.
    Morisada Y, Fujii H, Nagaoka T, Fukusumim M (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng, A 419:344–348CrossRefGoogle Scholar
  34. 34.
    Lee CJ, Huang JC, Hsieh PJ (2006) Mg based nano-composites fabricated by friction stir processing. Scr Mater 54:1415–1420CrossRefGoogle Scholar
  35. 35.
    Zarghani SA, Kashani-Bozorg SF, Zarei-Hanzaki A (2009) Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng, A 500:84–91CrossRefGoogle Scholar
  36. 36.
    Java KV, Sankaran KK, Rushau JJ (2000) Metall Mater Trans A 31A:2181–2188Google Scholar
  37. 37.
    Sato YS, Kokawa H (2001) Metall Mater Trans A 32A:3023–3031CrossRefGoogle Scholar
  38. 38.
    Yang M, Xu C, Wu C, Lin K, Chao Y, An L (2010) Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing. J Mater Sci 45(16):4431–4438CrossRefGoogle Scholar
  39. 39.
    Sharifitabar M, Sarani A, Khorshahian S, Shafiee Afarani M (2011) Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Mater Des 32:4164–4172CrossRefGoogle Scholar
  40. 40.
    Asadi P, Faraji G, Masoumi A, Besharati givi MK (2011) Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes. Metall Mater Trans A. doi:10.1007/s11661-011-0698-8
  41. 41.
    Mazaheri Y, Karimzadeh F, Enayati MH (2011) A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing. J Mater Process Technol. doi:10.1016/j.jmatprotec.2011.04.015
  42. 42.
    Hsu CJ, Chang CY, Kao PW, Ho NJ, Chang CP (2006) Al–Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater 54:5241–5249CrossRefGoogle Scholar
  43. 43.
    Hsu CJ, Kao PW, Ho NJ (2005) Ultrafine-grained Al–Al2Cu composite produced in situ by friction stir processing. Scr Mater 53:341–345CrossRefGoogle Scholar
  44. 44.
    Zhang Q, Xiao BL, Wang QZ, Ma ZY (2011) In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al–TiO2 system. Mater Lett 65:2070–2072CrossRefGoogle Scholar
  45. 45.
    Bauri R, Yadav D, Suhas G (2011) Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Mater Sci Eng, A 528:4732–4739CrossRefGoogle Scholar
  46. 46.
    Barmouza M, Seyfib J, Givia MKB, Hejazic I, Davachi SM (2011) A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing. Mater Sci Eng, A 528:3003–3006CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.School of Mechanical, Material and Energy EngineeringIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations