Recent development in finite element analysis of self-piercing riveted joints

ORIGINAL ARTICLE

Abstract

Self-piercing riveting (SPR) is a high-speed mechanical fastening technique which is suitable for point-joining advanced lightweight sheet materials that are dissimilar, coated, and hard to weld. Major advances have been made in recent years in SPR technique. Latest literature relating to finite element analysis (FEA) of SPR joints is reviewed in this paper. The recent development in FEA of SPR joints are described with particular reference to three major factors that influence the success of SPR technique: SPR process, failure mechanism, and mechanical behavior of SPR joints. The main FE methods used in FEA of SPR joints are discussed and illustrated with brief case studies from the literature. Areas where further useful progress can be made are also identified.

Keywords

Self-piercing riveting Finite element analysis Process monitoring Failure mechanics Mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    He X, Pearson I, Young K (2008) Self-pierce riveting for sheet materials: state of the art. J Mater Process Technol 199(1–3):27–36CrossRefGoogle Scholar
  2. 2.
    Bouchard PO, Laurent T, Tollier L (2008) Numerical modeling of self-pierce riveting—from riveting process modeling down to structural analysis. J Mater Process Technol 202(1-3):290–300CrossRefGoogle Scholar
  3. 3.
    Henrob Group: www.henrob.co.uk
  4. 4.
    Bollohoff Fastenings Ltd.: www.boellhoff.de
  5. 5.
    Emhart Teknologies: www.emhart.com
  6. 6.
    The Welding Institute TWI.: www.twi.co.uk
  7. 7.
    Sun X, Stephens EV, Khaleel MA (2007) Fatigue behaviors of self-piercing rivets joining similar and dissimilar sheet metals. Int J Fatigue 29:370–386CrossRefGoogle Scholar
  8. 8.
    Sun X, Khaleel MA (2007) Dynamic strength evaluations for self-piercing rivets and resistance spot welds joining similar and dissimilar metals. Int J Impact Eng 34(10):1668–1682CrossRefGoogle Scholar
  9. 9.
    Easton M, Beer A, Barnett M, Davies C, Dunlop G, Durandet Y, Blacket S, Hilditch T, Beggs P (2008) Magnesium alloy applications in automative structures. JOM 60(11):57–62CrossRefGoogle Scholar
  10. 10.
    Fratini L, Ruisi VF (2009) Self-piercing riveting for aluminum alloys-composites hybrid joints. Int J Adv Manuf Technol 43:61–66CrossRefGoogle Scholar
  11. 11.
    Durandet Y, Deam R, Beer A, Song W, Blacket S (2010) Laser assisted self-pierce riveting of AZ31 magnesium alloy strips. Mater Design 31(1):S13–S16. doi:10.1016/j.matdes.2009.10.038 CrossRefGoogle Scholar
  12. 12.
    Chenot JL, Massoni E (2006) Finite element modeling and control of new metal forming processes. Int J Mach Tool Manuf 46(11):1194–1200CrossRefGoogle Scholar
  13. 13.
    Chenot JL, Bouchard PO, Chastel Y, Massoni E (2007) Finite element simulation of forming, joining and strength of sheet components. Key Eng Mater 344:21–28CrossRefGoogle Scholar
  14. 14.
    Pickin CG, Young K, Tuersley I (2007) Joining of lightweight sandwich sheets to aluminium using self-pierce riveting. Mater Des 28(8):2361–2365CrossRefGoogle Scholar
  15. 15.
    Johnson P, Cullen JD, Sharples L, Shaw A, Al-Shamma’a AI (2009) Online visual measurement of self-pierce riveting systems to help determine the quality of the mechanical interlock. Measurement 42(5):661–667CrossRefGoogle Scholar
  16. 16.
    Han L, Thornton M, Shergold M (2010) A comparison of the mechanical behavior of self-piercing riveted and resistance spot welded aluminum sheets for the automotive industry. Mater Des 31(3):1457–1467CrossRefGoogle Scholar
  17. 17.
    Matsumura Y, Ogawa S, Misaki T (2007) Dissimilar metal joint technology for aluminum roof. Auto Technol 61(4):78–82, in JapaneseGoogle Scholar
  18. 18.
    He X, Pearson I, Young K (2007) Finite element analysis of self-pierce riveted joints. Key Eng Mater 344:663–668CrossRefGoogle Scholar
  19. 19.
    Mori K, Kato T, Abe Y, Ravshanbek Y (2006) Plastic joining of ultra high strength steel and aluminum alloy sheets by self piercing rivet. CIRP Annals - Manuf Technol 55(1):283–286CrossRefGoogle Scholar
  20. 20.
    Mori K, Abe Y, Kato T (2007) Finite element simulation of plastic joining processes of steel and aluminum alloy sheets. AIP Conf Proc 908:197–202CrossRefGoogle Scholar
  21. 21.
    Abe Y, Kato T, Mori K (2009) Self-piercing riveting of high tensile strength steel and aluminum alloy sheets using conventional rivet and die. J Mater Process Technol 209:3914–3922CrossRefGoogle Scholar
  22. 22.
    Atzeni E, Ippolito R, Settineri L (2007) FEM modeling of self-piercing riveted joint. Key Engineering Materials 344:655–662CrossRefGoogle Scholar
  23. 23.
    Atzeni E, Ippolito R, Settineri L (2009) Experimental and numerical appraisal of self-piercing riveting. CIRP Annals - Manuf Technol 58(1):17–20CrossRefGoogle Scholar
  24. 24.
    Xu Y (2005) Characterization of self-piercing riveted joints. PhD thesis, The University of Toledo, OH, USAGoogle Scholar
  25. 25.
    Haberkorn G, Blumcke EW, Thoma K (2006) Investigation of a self piercing riveted joint with a focus on dynamic loads. Materialprüfung/Mater Test 48(10):486–492, in GermanGoogle Scholar
  26. 26.
    Casalino G, Rotondo A, Ludovico A (2008) On the numerical modeling of the multiphysics self piercing riveting process based on the finite element technique. Adv Eng Software 39(9):787–795CrossRefGoogle Scholar
  27. 27.
    Porcaro R, Langseth M, Weyer S, Hooputra H (2008) An experimental and numerical investigation on self-piercing riveting. Int J Mater Form 1(1):1307–1310CrossRefGoogle Scholar
  28. 28.
    Liu X, Zhang L, Li S, Wan S, Liu W (2006) Finite element numerical simulation of self-pierce riveting. Autom Technol 42(4):42–45, in ChineseGoogle Scholar
  29. 29.
    Huang Z, Zhan J, Chen W (2007) Numerical simulation of self-piercing riveting with semi-tubular rivet. Forg Stamp Technol 32(5):54–58, in ChineseGoogle Scholar
  30. 30.
    Huang Z, Kang S, Lai J (2009) Numerical simulation and experiment of self-piercing riveting with flat-bottom die. Proc ICTE 345:1359–1364Google Scholar
  31. 31.
    Qu SG, Deng WJ (2009) Finite element simulation of the self-piercing riveting process. Proceedings of ASME International Mechanical Engineering Congress and Exposition 4:243–249Google Scholar
  32. 32.
    Lou M, Li Y, Huang S, Chen G (2009) Influence of die-rivet volume ratio on forming performance of self-piercing riveting joints of dissimilar materials. Chin Mech Eng 20(15):1873–1876, in ChineseGoogle Scholar
  33. 33.
    Cacko R, Czyžewski P, Kocañda A (2004) Initial optimization of self-piercing riveting process by means of FEM. Steel Grips 2:307–310Google Scholar
  34. 34.
    Cacko R, Czyžewski P (2007) Verification of numerical modeling of the SPR joint by experimental stack-up. Proceedings of the Computer Methods in Materials Science 7(1):124–130Google Scholar
  35. 35.
    Cacko R (2008) Review of different material separation criteria in numerical modeling of the self-piercing riveting process—SPR. Archives Civil Mech Eng 8(2):21–30Google Scholar
  36. 36.
    Kato T, Abe Y, Mori K (2007) Finite element simulation of self-piercing riveting of three aluminum alloy sheets. Key Eng Mater 340-341(II):1461–1466CrossRefGoogle Scholar
  37. 37.
    Abe Y, Kato T, Mori K (2008) Self-pierce riveting of three high strength steel and aluminium alloy sheets. Int J Mater Form 1(1):1271–1274CrossRefGoogle Scholar
  38. 38.
    Huang Z, Yao Q, Jiang N, Zhou Z (2009) Numerical simulation and experiment of self-piercing riveting with solid rivet joining multi-layer aluminum sheets. Mater Sci Forum 628–629:641–646CrossRefGoogle Scholar
  39. 39.
    Abe Y, Kato T, Mori K (2009) Aluminum alloy self-pierce riveting for joining of aluminum alloy sheets. Key Eng Mater 410–411:79–86CrossRefGoogle Scholar
  40. 40.
    Hoang NH, Porcaro R, Langseth M, Hanssen AG (2010) Self-piercing riveting connections using aluminum rivets. Int J Solids Struct 47(3–4):427–439MATHCrossRefGoogle Scholar
  41. 41.
    Abe Y, Kato T, Mori K (2006) Joinability of aluminum alloy and mild steel sheets by self piercing rivet. J MaterProcess Technol 177:417–421CrossRefGoogle Scholar
  42. 42.
    Eckstein J, Roos E, Roll K, Ruther M, Seidenfuß M (2007) Experimental and numerical investigations to extend the process limits in Self-Pierce Riveting. AIP Conf Proc 907:279–284CrossRefGoogle Scholar
  43. 43.
    Dannbauer H, Gaier C, Dutzler E, Halaszi C (2006) Development of a model for the stiffness and life time prediction of self piercing riveted joints in automotive components. Materialprüfung/Mater Test 48(11–12):576–581, in GermanGoogle Scholar
  44. 44.
    Porcaro R, Hanssen AG, Langseth M, Aalberg A (2006) An experimental investigation on the behavior of self-piercing riveted connections in aluminum alloy AA6060. Int J Crashworth 11(5):397–417CrossRefGoogle Scholar
  45. 45.
    Ruprechter F, Kepplinger G, Dolle N, Martin M, Ageorges C (2006) Fatigue life estimation of self piercing rivets in car body development based on local stresses using node independent meshing. VDI Berichte (1967 II):777–795, in GermanGoogle Scholar
  46. 46.
    Galtier A, Duchet M (2007) Fatigue behavior of high strength steel thin sheet assemblies. Weld World 51(3–4):19–27Google Scholar
  47. 47.
    Lim BK (2008) Analysis of fatigue life of SPR(Self-Piercing Riveting) jointed various specimens using FEM. Mater Sci Forum 580–582:617–620CrossRefGoogle Scholar
  48. 48.
    Huang H, Du D, Chang BH, Sui B, Chen Q (2007) Distortion analysis for self-piercing riveting of aluminum alloy sheets. Sci Technol Weld Join 12(1):73–78CrossRefGoogle Scholar
  49. 49.
    Sui B, Du D, Chang B, Huang H, Wang L (2007) Simulation and analysis of self-piercing riveting process in aluminum sheets. Mater Sci Technol 15(5):713–717, in ChineseGoogle Scholar
  50. 50.
    Porcaro R, Langseth M, Hanssen AG, Zhao H, Weyer S, Hooputra H (2008) Crashworthiness of self-piercing riveted connections. Int J Impact Eng 35:1251–1266CrossRefGoogle Scholar
  51. 51.
    He X, Pearson I, Young K (2007) Three dimensional finite element analysis of transverse free vibration of self-pierce riveting beam. Key Eng Mater 344:647–654CrossRefGoogle Scholar
  52. 52.
    He X (2009) Influence of sheet material characteristics on the torsional free vibration of single lap-jointed cantilevered SPR joints. In: Proceedings of ICMTMA 2009, pp. 800–803Google Scholar
  53. 53.
    He X (2010) An approximate method via coefficient of variation for strength prediction of self-piercing riveted joints. Applied Mechanics and Materials 26–28:334–339CrossRefGoogle Scholar
  54. 54.
    He X, Zhu X, Dong B (2010) Transverse free vibration analysis of hybrid SPR steel joints. In: Proceedings of MIMT 2010, pp. 389–394.Google Scholar
  55. 55.
    He X, Dong B, Zhu X (2010) Free vibration characteristics of hybrid SPR beams. AIP Conference Proceedings 1233:678–683CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Innovative Manufacturing Research CentreKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.School of Computing and EngineeringUniversity of HuddersfieldQueensgate HuddersfieldUK

Personalised recommendations