Geometric decomposition of 3D surface meshes using Morse theory and region growing

  • Jun Wang
  • Zeyun Yu


This paper presents a new algorithm for decomposition (segmentation) of surfaces using curvature labeling, Morse theory, and region growing technologies. The geometric properties are estimated on triangular meshes and all mesh elements (vertices and triangles) are labeled with different surface types. The surface decomposition method proposed consists of two steps: initial segmentation and refinement. The initial segmentation is performed by grouping the topologically adjacent mesh elements with the same surface type using the region growing technique. A Morse function is then defined based on the smoothed curvatures using bilateral filtering to extract the critical points of a triangular surface mesh. The final segmentation is obtained by a combination of the steepest ascent/descent strategy and region growing technique. The experimental results on many 3D models, particularly molecular surfaces, have demonstrated the effectiveness and robustness of the proposed segmentation method.


Surface decomposition Mesh segmentation Curvature labeling Morse theory Critical point Region growing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agathos A, Pratikakis I, Perantonis S, Sapidis N, Azariadis P (2007) 3D mesh segmentation methodologies for CAD applications. Comput Aided Des Appl 4(6):827–841Google Scholar
  2. 2.
    Rustamov, R (2009) On mesh editing, manifold learning, and diffusion wavelets. In: IMA Conference on the Mathematics of Surfaces, pp 307–321Google Scholar
  3. 3.
    Benko P, Varady T (2004) Segmentation methods for smooth point regions of conventional engineering objects. Comput Aided Des 36(6):511–523CrossRefGoogle Scholar
  4. 4.
    Gelfand N, Guibas LJ (2004) Shape segmentation using local slippage analysis. In: Eurographics Symposium on Geometric Processing, pp. 214–223Google Scholar
  5. 5.
    Karni Z, Gotsman C (2000) Spectral compression of mesh geometry. In: Proceedings of SIGGRAPH, pp. 279–286Google Scholar
  6. 6.
    Zuckerberger E, Tal A, Shlafman S (2002) Polyhedral surface decomposition with applications. Comput Graph 26(5):733–743CrossRefGoogle Scholar
  7. 7.
    Wang H, Oliensis J (2008) Shape matching by segmentation averaging. Lect Notes Comput Sci 5302:562–575CrossRefGoogle Scholar
  8. 8.
    Gregory A, State A, Lin M, Manocha D, Livingston M (1999) Interactive surface decomposition for polyhedral morphing. Vis Comput 15:453–470CrossRefGoogle Scholar
  9. 9.
    Zockler M, Stalling D, Hege HC (2000) Fast and intuitive generation of geometric shape transitions. Vis Comput 16(5):241–253CrossRefGoogle Scholar
  10. 10.
    Li X, Toon T, Tan T, Huang Z (2001) Decomposing polygon meshes for interactive applications. In: Proceedings of the symposium on Interactive 3D graphics, pp. 35–42Google Scholar
  11. 11.
    Katz S, Tal A (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Graph 22(3):954–961CrossRefGoogle Scholar
  12. 12.
    Levy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generation. In: Proceedings of SIGGRAPH, pp. 362–371Google Scholar
  13. 13.
    Shamir A (2008) A survey on mesh segmentation techniques. Comput Graphics Forum 27(6):1539–1556zbMATHCrossRefGoogle Scholar
  14. 14.
    Attene M, Katz S, Mortara M, Patane G, Spagnuolo M, Tal A (2006) Mesh segmentation - a comparative study. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, pp. 14–25Google Scholar
  15. 15.
    Besl PJ, Jain R (1998) Segmentation through variable-order surface fitting. IEEE PAMI 10(2):167–192CrossRefGoogle Scholar
  16. 16.
    Falcidieno B, Spagnuolo M (1992) Polyhedral surface decomposition based on curvature analysis. In: Kunii TL, Shinagawa Y (eds) Modern geometric computing for visualization. Springer, New York, pp 57–72Google Scholar
  17. 17.
    Sapidis N, Besl P (1995) Direct construction of polynomial surfaces from dense range images through region growing. ACM Trans Graph 14(2):171–200CrossRefGoogle Scholar
  18. 18.
    Srinark T, Kambhamettu C (2003) A novel method for 3D surface mesh segmentation. In: Proceedings of the 6th Intl. Conf. on Computers, Graphics and Imaging, pp. 212–217Google Scholar
  19. 19.
    Lavoué G, Dupont F, Baskurt A (2004) Curvature tensor based triangle mesh segmentation with boundary rectification. In: IEEE Computer Graphics International, pp. 10–17Google Scholar
  20. 20.
    Mangan AP, Whitaker RT (1999) Partitioning 3D surface meshes using watershed segmentation. IEEE Trans Vis Comput Graph 5(4):308–321CrossRefGoogle Scholar
  21. 21.
    Page DL, Koschan A, Abidi M (2003) Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Proc. of Computer Vision and Pattern Recognition, pp. 27–32Google Scholar
  22. 22.
    Garland M, Willmott A, Heckbert P (2001) Hierarchical face clustering on polygonal surfaces. In: Proceedings of ACM Symposium on Interactive 3D Graphics, pp. 49–58Google Scholar
  23. 23.
    Shlafman S, Tal A, Katz S (2002) Metamorphosis of polyhedral surfaces using decomposition. In: Eurographics, pp. 219–228Google Scholar
  24. 24.
    Attene M, Falcidieno B, Spagnuolo M (2006) Hierarchical mesh segmentation based on fitting primitives. Vis Comput 22(3):181–193CrossRefGoogle Scholar
  25. 25.
    Zhou Y, Huang Z (2004) Decomposing polygon meshes by means of critical points. In: MMM, pp. 187–195Google Scholar
  26. 26.
    Katz S, Leifman G, Tal A (2005) Mesh segmentation using feature point and core extraction. Vis Comput 21(8–10):865–875Google Scholar
  27. 27.
    Natarajan V, Wang Y, Bremer PT, Pascucci V, Hamann B (2006) Segmenting molecular surfaces. Comput Aided Geom Des 23(6):495–509MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lien JM, Keyser J, Amato NM (2006) Simultaneous shape decomposition and skeletonization. In: Proceedings of ACM Solid and Physical Modeling Symposium, pp. 219–228Google Scholar
  29. 29.
    Lai Y, Zhou Q, Hu S, Martin RR (2006) Feature sensitive mesh segmentation. In: Proceedings of the 2006 ACM symposium on Solid and physical modeling, pp. 17–25Google Scholar
  30. 30.
    Berretti S, Bimbo AD, Pala P (2006) Partitioning of 3D meshes using reeb graphs. In: Proceedings of the 18th International Conference on Pattern Recognition, pp. 19–22Google Scholar
  31. 31.
    Antini G, Berretti S, Bimbo AD, Pala P (2005) 3D Mesh partitioning for retrieval by parts applications. In: Proc. IEEE International Conference on Multimedia & Expo, pp. 1210–1213Google Scholar
  32. 32.
    Meyer M, Desbrun M, Schroder P, Barr A (2002) Discrete differential geometry operators for triangulated two-manifolds. In: Hege H-C, Poltheir K (eds) Visualization and mathematics, vol 3. Springer, Berlin, pp 34–57Google Scholar
  33. 33.
    Taubin G (1995) Estimating the tensor of curvature of a surface from a polyhedra approximation. In: ICCV, pp. 902–907Google Scholar
  34. 34.
    Hamann B (1993) Curvature approximation for triangulated surfaces, geometric modeling. Springer, LondonGoogle Scholar
  35. 35.
    Goldfeather J, Interrante V (2004) A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans Graph 23(1):45–63CrossRefGoogle Scholar
  36. 36.
    Razdan A, Bae M (2005) Curvature estimation scheme for triangle meshes using biquadratic Bézier patches. Comput Aid Des 37(14):1481–1491zbMATHCrossRefGoogle Scholar
  37. 37.
    Clarkson KL (1983) Fast algorithm for the all nearest neighbors problem. In: Proceedings of the 24th IEEE Annual Symposium on Foundations of Computer Science, pp. 226–232Google Scholar
  38. 38.
    Milnor J (1963) Morse theory. Princeton Univ. Press, Princeton, NJzbMATHGoogle Scholar
  39. 39.
    Matsumoto Y (2002) An introduction to Morse theory. Amer. Math. Soc. Translated from Japanese by K. Hudson and M. Saito. Providence, RI: AMSGoogle Scholar
  40. 40.
    Banchoff TF (1970) Critical points and curvature for embedded polyhedral surfaces. Amer Math Monthly 77(5):475–485MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Goresky M, MacPherson R (1988) Stratified Morse theory. Springer, HeidelbergzbMATHGoogle Scholar
  42. 42.
    Bremer PT, Edelsbrunner H, Hamann B, Pascucci V (2004) A topological hierarchy for functions on triangulated surfaces. IEEE Trans Vis Comput Graph 10(4):385–396CrossRefGoogle Scholar
  43. 43.
    Hilaga M, Shinagawa Y, Komura T, Kunii TL (2001) Topology matching for full automatic similarity estimation of 3d shapes. In: Proceedings of SIGGRAPH, pp. 203–212Google Scholar
  44. 44.
    Ni X, Garland M, Hart JC (2004) Fair Morse functions for extracting the topological structure of a surface mesh. In: Proc. of SIGGRAPH, pp. 613–622Google Scholar
  45. 45.
    Liu Y, Liu M, Kihara D, Ramani K (2007) Salient critical points for meshes. In: Proceedings of the 2007 ACM symposium on Solid and Physical Modeling, pp. 277–282Google Scholar
  46. 46.
    Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proc. Sixth Int'l Conf. Computer Vision, pp. 839–846Google Scholar
  47. 47.
    Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Yu Z (2009) A list-based method for fast generation of molecular surfaces. In: Proceedings of the 31st Int’l Conf. of IEEE Engineering in Medicine and Biology Society, pp. 5909–5912Google Scholar
  49. 49.
    Wang J, Yu Z (2009) A novel method for surface mesh smoothing: applications in biomedical modeling. In: Proceedings of the 18th International Meshing Roundtable, pp. 195–210Google Scholar
  50. 50.
    Shapira L, Shamir A, Cohen-Or D (2008) Consistent mesh partitioning and skeletonization using the shape diameter function. Vis Comput 24(4):249–259CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations