Investigation of the effect of roll forming pass design on main redundant deformations on profiles from AHSS

  • John Paralikas
  • Konstantinos Salonitis
  • George Chryssolouris


The tooling design in the roll forming process plays a major role in the quality and successful mass production of a variety of complex profiled products, in many industrial sectors. The roll forming line is comprised of consecutive forming passes. Each roll forming pass consists of a set of rotating rollers able to bend the material as it passes through them. The roll forming pass design plays a major role in the production of profiles. The introduction of advanced high strength steels (AHSS), such as the DP-series and TRIP-series, has also posed new challenges for the design of the roll passes. The current paper exploits explicitly the finite elements (FE) method and investigates the effect of the roll forming passes design on main redundant deformations, such as longitudinal stains at the edge of the profile, shear strains on strips plane, thickness reduction, and final produced cross section with springback. The profiles discussed are symmetrical V- and U-sections from the AHSS Dual Phase series (DP780). The gradual lowering of the flower pattern design, known as “downhill pass flow”, is discussed. The calculated decrease in the peak longitudinal strains of up to 28%, and the decrease in thickness of up to 38% are also presented and discussed.


Cold roll forming Modeling AHSS Pass design Downhill pass flow Redundant deformations 


  1. 1.
    Chryssolouris G (2005) Manufacturing systems-theory and practice, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  2. 2.
    Lange K (1985) Handbook of metal forming. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Panton SM, Duncan JL, Zhu SD (1996) Longitudinal and shear strain development in cold roll forming. J Mater Process Technol 60:219–224CrossRefGoogle Scholar
  4. 4.
    Halmos GT (2006) Roll forming handbook. CRC, New YorkGoogle Scholar
  5. 5.
    Wick C, Benedict J, Veilleux R (1984) Tool and manufacturing engineers handbook, Volume 2 Forming, SMEGoogle Scholar
  6. 6.
    Alvarez W (2006) Roll form tool design. Industrial Press Inc, New YorkGoogle Scholar
  7. 7.
    Paralikas J, Salonitis K, Chryssolouris G (2009) Investigation of the roll forming process parameters' effect on the quality of an AHSS open profile. Int J Adv Manuf Technol 44:223–237. doi: 10.1007/s00170-008-1822-9 CrossRefGoogle Scholar
  8. 8.
    Salonitis K, Paralikas J, Chryssolouris G (2008) Roll Forming of AHSS: Numerical Simulation and investigation of effects of main process parameters on quality, 1st International Conference of Engineering Against Fracture, Patras, GreeceGoogle Scholar
  9. 9.
    Paralikas J, Salonitis K, Chryssolouris G (2010) Optimization of the roll forming process parameters—a semi empirical approach. Int J Adv Manuf Technol 47:1041–1052. doi: 10.1007/s00170-009-2252-z CrossRefGoogle Scholar
  10. 10.
    Jeong SH, Lee SH, Kim GH, Seo HJ, Kim TH (2007) Computer simulation of U-channel for under-rail roll forming using rigid-plastic finite element methods. J Mater Process Tech. doi: 10.1016/j.jmatprotec.2007.11.130 Google Scholar
  11. 11.
    Bui QV, Ponthot JP (2007) Numerical simulation of cold roll-forming processes. J Mater Process Tech. doi: 10.1016/j.jmatprotec.2007.08.073 Google Scholar
  12. 12.
    Lindgren M (2007) Cold roll forming of a U-channel made of high strength steel. J Mater Process Tech. doi: 10.1016/j.jmatprotec.2006.12.017 Google Scholar
  13. 13.
    Tehrani MS, Naeini HM, Hartley P, Khademizadeh H (2006) Localized edge buckling in cold roll-forming of circular tube section. J Mater Process Technol 177:617–620CrossRefGoogle Scholar
  14. 14.
    Boman R, Papeleux L, Bui QV, Ponthot JP (2006) Application of the Arbitrary Lagrangian Eulerian formulation to the numerical simulation of cold roll forming process. J Mater Process Technol 177:621–625CrossRefGoogle Scholar
  15. 15.
    Han Z-W, Liu C, Lu W-P, Ren L-Q, Tong J (2005) Spline finite strip analysis of forming parameters in roll forming a channel section. J Mater Process Technol 159:383–388CrossRefGoogle Scholar
  16. 16.
    Lindgren M (2005) Modeling and simulation of the roll forming process, Licentiate thesis, Lulea University of technologyGoogle Scholar
  17. 17.
    Zeng G, Li SH, Yu ZQ, Lai XM (2008) Optimization design of roll profiles for cold roll forming based on response surface method. Journal of Materials and Design. doi: 10.1016/j.matdes.2008.09.018 Google Scholar
  18. 18.
    Zhang L, Ni J, Lai X (2008) Dimensional errors of rollers in the stream of variation modeling in cold roll forming process of quadrate steel tube. Int J Adv Manuf Technol 37:1082–1092CrossRefGoogle Scholar
  19. 19.
    Li DY, Peng YH, Yin JL (2007) Optimization of metal-forming process via a hybrid intelligent optimization technique. Struct Multidisc Optim 34:229–241. doi: 10.1007/s00158-006-0075-1 CrossRefGoogle Scholar
  20. 20.
    Downes A, Hartley P (2006) Using an artificial neural network to assist roll design in cold roll-forming processes. J Mater Process Technol 177:319–322CrossRefGoogle Scholar
  21. 21.
    Mynors DJ, English M, Castellucci M (2006) Controlling the cold roll forming design process. Annals of the CIRP 55/1/2006, p. 271Google Scholar
  22. 22.
    DataM Software GmbH, Copra® Roll Forming, URL:
  23. 23.
    Roll Forming Services (RFS), URL:
  24. 24.
    Ubeco, Profil Roll Forming Design Software, URL:
  25. 25.
    Hosford WF, Caddell RM (2007) Metal forming mechanics and metallurgy, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  26. 26.
    Panton SM, Zhu SD, Duncan JL (1992) Geometric constraints on the forming path in roll forming channel sections, Proceedings of the Institution of Mechanical Engineers. J Eng Manuf 206:113–118CrossRefGoogle Scholar
  27. 27.
    Altan T (2003) Predicting springback in air bending, straight flanging, Stamping Journal, URL:
  28. 28.
    Hallquist JO (2006), LS-Dyna Theory manual, Livermore Software Technology CorpGoogle Scholar
  29. 29.
    ANSYS Release 10.0 (2005), ANSYS LS-Dyna User Guide, ANSYS IncGoogle Scholar
  30. 30.
    Rojeka J, Zienkiewiczb OC, Onatec E, Posteka E (2001) Advances in FE explicit formulation for simulation of metalforming processes. J Mater Process Technol 119:41–47CrossRefGoogle Scholar
  31. 31.
    FUTURA internal report, (2008), MFMs' processing and environmental specifications; Material characterization databaseGoogle Scholar
  32. 32.
    Harewood FJ, McHugh PE (2007) Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput Mater Sci 39:481–494CrossRefGoogle Scholar
  33. 33.
    Darm K (1989) Determination of longitudinal strains in roll forming of standard section in a multi-stand machine, Institute for Production TechnologyGoogle Scholar
  34. 34.
    Hong S, Lee S, Kim N (2001) A parametric study on forming length in roll forming. Journal of Materials Processing Technology 113(1):774–778CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • John Paralikas
    • 1
  • Konstantinos Salonitis
    • 1
  • George Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations