Advertisement

Running-in phase of spherical chassis joints—identification of the main influence parameter and implementation in a wear simulation tool

  • Mohammad-Hesam EjtehadiEmail author
  • Hubert Klaus
  • Stefanie Sommer
  • Henning Haensel
  • Jan Scholten
Original Article
  • 182 Downloads

Abstract

Spherical joints are used in automotive chassis to connect components. They are used in locations where force transmission and at least two rotational degrees of freedom are required simultaneously. The source of wear in such joints specifically in the running-in phase has been an important question in the automotive industry. In this work, the main cause of running-in wear in a specific type of spherical chassis joint is identified experimentally. To verify this identification, simplified tribological tests are conducted on sample geometries of polyoxymethylene representing contact surfaces in spherical joint. The results are used to develop an algorithm which describes the running-in phase in a wear simulation tool. Material tests for polyoxymethylene are conducted in order to identify the stress–strain behaviour which is then used for non-linear finite element simulations in the implemented algorithm. The simplified tribological experiments are subsequently simulated using the modified wear simulation tool for validation.

Keywords

Running-in phase Chassis joint Polyoxymethylene Plasticity Wear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czichos H, Habig KH (2003) Tribologie-Handbuch Reibung und Verschleiβ. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, WiesbadenGoogle Scholar
  2. 2.
    Scholten J (2001) Theoretische und experimentelle Untersuchungen zur Beanspruchungsermittlung wartungsfreier Gelenklager. Dissertation, Ruhr-Universität BochumGoogle Scholar
  3. 3.
    Haensel H (2004) Systemanalytische Betrachtung sphärischer tribomechanischer Systeme. Dissertation, Ruhr-Universität BochumGoogle Scholar
  4. 4.
    Lehnert N (2007) Entwicklung einer tribomechanischen Bauteilsimulation am Beispiel des sphärischen Gelenklagers. Dissertation, Ruhr-Universität BochumGoogle Scholar
  5. 5.
    Zhelezkov OS, Mikhailova UV (2009) Modernization of ball joints in the auto industry. Russ Eng Res 29:1265–1266CrossRefGoogle Scholar
  6. 6.
    Sethuramiah A (2003) Lubricated wear science and technology. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Kumar R, Prakash B, Sethuramiah A (2002) A systematic methodology to characterise the running-in and steady-state wear processes. Wear 252:445–453CrossRefGoogle Scholar
  8. 8.
    Bayer RG (2004) Engineering design for wear. Marcel Dekker, New YorkGoogle Scholar
  9. 9.
    Zheng M, Naeim AH, Walter B, John G (1998) Break-in liner wear and piston ring assembly friction in a spark-ignited engine. Tribol Trans 41:497–504CrossRefGoogle Scholar
  10. 10.
    Weber M (2009) Numerical simulation of changes in chassis joint stiffness with application of different material models for Polyoxymethylene. Master thesis, Technische Universität MünchenGoogle Scholar
  11. 11.
    Hartmann S (2006) A thermomechanically consistent constitutive model for polyoxymethylene. Arch Appl Mech 76:349–366zbMATHCrossRefGoogle Scholar
  12. 12.
    Arruda EM, Boyce MC, Jayachandran R (1995) Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech Mater 19:193–212CrossRefGoogle Scholar
  13. 13.
    Kletschkowski T, Schomburg U, Bertram A (2001) Viskoplastische Materialmodellierung am Beispiel des Dichtungswerkstoffs Polytetrafluorethylen. Technische Mechanik 21:227–241Google Scholar
  14. 14.
    Rieger S (2004) Temperaturabhängige Beschreinung visko-elasto-plastischer Deformationen kurzglasfaserverstärkter Thermoplaste: modellierung, Numerik und Experimente. Dissertation, Universität StuttgartGoogle Scholar
  15. 15.
    Bader B, Koch R (1994) Numerical simulation (FEM) of snap-in and snap-out process of ball snap-fits. Comput Mater Sci 3:125–134CrossRefGoogle Scholar
  16. 16.
    Scholten J, Haensel H, Krekeler N, Fuchs H, Stenke R, Ejtehadi MH (2010) Modellierung des Einflusses der Verschleiβverteilung auf die Beanspruchung von Fahrwerksgelenken. Mater Test 52:463–469Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Mohammad-Hesam Ejtehadi
    • 1
    Email author
  • Hubert Klaus
    • 1
  • Stefanie Sommer
    • 2
  • Henning Haensel
    • 2
  • Jan Scholten
    • 2
  1. 1.Audi AG, Festigkeit FahrwerkIngolstadtGermany
  2. 2.Arbeitsgruppe BaumaschinentechnikRuhr-Universität BochumBochumGermany

Personalised recommendations