Advertisement

Double-spiral tool path in configuration space

  • Steffen Hauth
  • Lars Linsen
Original Article

Abstract

Using a spiral tool path is a common strategy in many NC machining applications. It can be used for high-speed machining of pockets or as a space-filling curve for finish applications. When using spirals for finishing application, a double spiral is desired to avoid having a starting or end-point at the center of the workpiece. In this paper, we present an algorithm to create a double spiral from offset curves in a precomputed configuration space (c-space). CAD/CAM systems that operate on NURBS surfaces or on triangular meshes have to deal with the issues of patch-boundary oscillations or long, stretched triangles, respectively. This can be avoided when operating in c-space. The c-space is given in the form of a regular quadrilateral heightfield mesh, which may be adaptively subdivided, where the slope is large. This simple data structure is memory efficient and has proven to be beneficial in CAD/CAM frameworks. Our algorithm creates a double spiral by blending adjacent offset curves. The center of the spiral is filled by a b-spline curve. When given offset curves split into multiple components, the algorithm creates multiple smaller spirals and connects them appropriately. The resulting tool path is one large intersection-free curve with starting and end-point on the boundary of the workpiece.

Keywords

Spiral Double-sprial C-space Toolpath 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DIN 66025-2 (1988) http://www.din.de
  2. 2.
    Bieterman M (2001) Mathematics in manufacturing: new approach cuts milling costs. SIAM News 34(7):1–3Google Scholar
  3. 3.
    Bommes D, Kobbelt L (2007) Accurate computation of geodesic distance fields for polygonal curves on triangle meshes. In VMV, pp 151–160Google Scholar
  4. 4.
    Choi BK, Jerard RB (1998) Sculptured surface machining: theory and applications, 1 edn. Springer-Verlag GmbhGoogle Scholar
  5. 5.
    Choi BK, Kim DH, Jerard RB (1997) C-space approach to tool-path generation for die and mould machining. Comput Aided Des 29(9):657–669CrossRefGoogle Scholar
  6. 6.
    Choy HS, Chan KW (2003) A corner-looping based tool path for pocket milling. Comput Aided Des 35(2):155–166CrossRefGoogle Scholar
  7. 7.
    Dragomatz D, Mann S (1997) A classified bibliography of literature on nc milling path generation. Comput Aided Des 29(3):239–247CrossRefGoogle Scholar
  8. 8.
    Dunn CR, Walker DD (2008) Pseudo-random tool paths for cnc sub-aperture polishing and other applications. Opt Express 16(23):18942–18949CrossRefGoogle Scholar
  9. 9.
    Gray A (1996) Modern differential geometry of curves and surfaces with mathematica. CRC Press, Inc., Boca Raton, FL, USAGoogle Scholar
  10. 10.
    Hauth S, Richterich C, Glasmacher L, Linsen L (2010) Constant cusp toolpath generation in configuration space based on offset curves. Int J Adv Manuf Technol. doi: 10.1007/s00170-010-2817-x Google Scholar
  11. 11.
    Held M (1991) A geometry-based investigation of the tool path generation for zigzag pocket machining. Vis Comput 7(5–6):296–308CrossRefGoogle Scholar
  12. 12.
    Held M (1991) On the computational geometry of pocket machining. Lecture notes in computer science, vol 500/1991. Springer Berlin, HeidelbergzbMATHGoogle Scholar
  13. 13.
    Held M, Spielberger C (2003) A smooth spiral tool path for high speed machining of 2d pockets. Comput Aided Des 41(7):539–550CrossRefGoogle Scholar
  14. 14.
    Hoffmann CM (1989) Geometric and solid modeling: an introduction (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann Publrs., U.S.Google Scholar
  15. 15.
    Hoschek J, Lasser D (1993) Fundamentals of computer aided geometric design. A. K. Peters, Ltd.Google Scholar
  16. 16.
    Kavraki L (1995) Computation of configuration-space obstacles using the fast fourier transfom. IEEE Trans Robot Autom 11:408–413CrossRefGoogle Scholar
  17. 17.
    Lambregts CAH, Delbressine FLM, de Vries WAH, van der Wolf ACH (1996) An efficient automatic tool path generator for 2.5d free-form pockets. Comput Ind 29(3):151–157CrossRefGoogle Scholar
  18. 18.
    LambregtsCorresponding CAH, Delbressine FLM, de Vries WAH, van der Wolf ACH (2000) Improvement of formability for the incremental sheet metal forming process. Int J Mech Sci 42(7):1271–1286CrossRefGoogle Scholar
  19. 19.
    Marinac D (2000) Tool path strategies for high speed machining. Mod Mach Shop (USA) 72(9):104–110Google Scholar
  20. 20.
    Marshall S, Griffiths J (1994) A survey of cutter path construction techniques for milling process. Int J Prod Res 32(12):2861–2877zbMATHCrossRefGoogle Scholar
  21. 21.
    Murray RM, Li Z, Shankar Sastry S (1994) A mathematical introduction to robotic manipulation. CRC PressGoogle Scholar
  22. 22.
    Ryuha B-S, Parkb SM, Pennock GR (2006) An automatic tool changer and integrated software for a robotic die polishing station. Mech Mach Theory 41(4):415–432CrossRefGoogle Scholar
  23. 23.
    Sagan H (1994) Space-filling curves. Springer-Verlag GmbhGoogle Scholar
  24. 24.
    Siemens (2006) SINUMERIK 840D sl/840Di sl/ 840D/840Di/810D Grundfunktionen: Bahnsteuerbetrieb, Genauhalt, LookAhead (B1)Google Scholar
  25. 25.
    Sun Y-W, Guo DM, Jia Z-Y (2006) Spiral cutting operation strategy for machining of sculptured surfaces by conformal map approach. J Mater Process Technol 180(1–3):74–82CrossRefGoogle Scholar
  26. 26.
    Surazhsky V, Surazhsky T, Kirsanov D, Gortler SJ, Hoppe H (2005) Fast exact and approximate geodesics on meshes. ACM Trans Graph 24(3):553–560CrossRefGoogle Scholar
  27. 27.
    Weck M (1988) Werkzeugmaschinen Band 1. Maschinenarten, Bauformen und Anwendungsgebiete Springer-Verlag Berlin HeidelbergGoogle Scholar
  28. 28.
    Weck M (1997) Werkzeugmaschinen, Fertigungssysteme 2. Konstruktion und Berechnung. Springer-Verlag Berlin HeidelbergGoogle Scholar
  29. 29.
    Weck M (2006) Werkzeugmaschinen 4: Automatisierung von Maschinen und Anlagen. Springer-Verlag Berlin HeidelbergGoogle Scholar
  30. 30.
    Weck M, Brecher C (2006) Werkzeugmaschinen 3: Mechatronische Systeme: Vorschubantriebe, Prozessdiagnose. Springer-Verlag Berlin HeidelbergGoogle Scholar
  31. 31.
    Yang J, Bin H, Zhang X, Liu Z (2003) Fractal scanning path generation and control system for selective laser sintering (sls). Int J Mach Tools Manuf 43(3):293–300CrossRefGoogle Scholar
  32. 32.
    You C-F, Sheen B-T, Lin T-K (2001) Robust spiral tool-path generation for arbitrary pockets. Int J Adv Manuf Technol 17(3):181–188CrossRefGoogle Scholar
  33. 33.
    Yuwen S, Dongming G, zhenyuan J, Haixia W (2006) Iso-parametric tool path generation from triangular meshes for free-form surface machining. Int J Adv Manuf Technol 28:721–726CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.School of Engineering and ScienceJacobs UniversityBremenGermany

Personalised recommendations