Application of electromagnetic impact technique for welding copper-to-stainless steel sheets

  • Sachin D. Kore
  • P. P. Date
  • S. V. Kulkarni
  • Satendra Kumar
  • Dolly Rani
  • M. R. Kulkarni
  • S. V. Desai
  • R. K. Rajawat
  • K. V. Nagesh
  • D. P. Chakravarty
ORIGINAL ARTICLE
  • 535 Downloads

Abstract

The ability to manufacture a product using different metal combinations greatly increases flexibility in design and production. Joining of dissimilar metal combinations like Copper-to-Stainless Steel (Cu-to-SS) is, however, a challenging task owing to the large differences in physical and chemical properties. The application of electromagnetic (EM) impact technique is demonstrated for welding copper (Cu) to stainless steel (SS) sheets. The welding Cu-to-SS is accomplished by using Al drivers to accelerate Cu and SS work sheets. The tensile shear strength test and the metallographic studies are carried out for Cu-to-SS EM welds.

Keywords

Electromagnetic Welding Impact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mamalis AG, Manolakos DE, Kaldas AG, Koumoutsos AK (2004) Electromagnetic forming and powder processing: trends and developments. Appl Mech Rev 57(4):299–324CrossRefGoogle Scholar
  2. 2.
    El-Azab A, Garnich M, Kapoor A (2003) Modeling of the electromagnetic forming of sheet metals: state of art and future needs. J Mater Process Technol 142:744–754CrossRefGoogle Scholar
  3. 3.
    Zhang P. (2003) Joining enabled by high velocity deformation, Ph.D. Thesis in OhioLink ETD, Ohio State University. http://www.ohiolink.edu/etd/view.cgi?acc_num=osu1061233577, Accessed 14 August 2008
  4. 4.
    Masumoto I, Tamaki K, Kojima M (1985) Electromagnetic welding of aluminum tube to aluminum or dissimilar metal cores. Trans Jpn Weld Soc 16(2):110–116Google Scholar
  5. 5.
    Kojima M, Tamaki K (1990) Electromagnetic welding of tubes. The 5th International symposium of the Japan welding society, Tokyo, pp 201–206Google Scholar
  6. 6.
    Kojima M, Tamaki K (1988) Factors affecting the electromagnetic welding of aluminum tube. Trans Jpn Weld Soc 19(1):35–43Google Scholar
  7. 7.
    Kojima M, Tamaki K, Furuta T (1989) Effect of collision angle on the result of electromagnetic welding of aluminum. Trans Jpn Weld Soc 20(2):36–42Google Scholar
  8. 8.
    Kojima M, Tamaki K, Suzuki J, Sasaki K (1990) Flow stress, collision velocity and collision acceleration in EM welding. Welding International 4(9):684–690CrossRefGoogle Scholar
  9. 9.
    Hwang WS, Kim NH, Sohn HS, Lee JS (1992) Electromagnetic joining of aluminum tubes on plyurethane cores. J Mater Process Technol 34(1–4):341–348CrossRefGoogle Scholar
  10. 10.
    Hwang WS, Lee JS, Kim NH, Sohn HS (1993) Joining of copper tube to polyurethane tube by electromagnetic pulse forming. J Mater Process Technol 37(1–4):83–93CrossRefGoogle Scholar
  11. 11.
    Powers HG (1967) Bonding of Al by the capacitor discharge magnetic forming process. Welding Journal 46(6):507–510Google Scholar
  12. 12.
    Marya M, Marya S (2004) Interfacial microstructures and temperatures in aluminum–copper electromagnetic pulse welds. Sci Technol Weld Joining 9(6):541–547CrossRefGoogle Scholar
  13. 13.
    Stern A, Aizenshtein M (2002) Bonding zone formation in magnetic pulse welds. Sci Technol Weld Joining 7(5):339–342CrossRefGoogle Scholar
  14. 14.
    Marya M, Marya S, Priem D (2005) On the characteristics of electromagnetic welds between aluminum and other metals and alloys. Weld World 49:74–84Google Scholar
  15. 15.
    Shribman V, Stern A, Livshitz Y, Gafri O (2002) Magnetic pulse welding produces high strength aluminum welds. Weld J 81(4):33–37Google Scholar
  16. 16.
    Kimchi M, Saho H, Cheng W, Krishnaswamy P (2004) Magnetic pulse welding of aluminum tubes to steel bars. Weld World 48:19–22Google Scholar
  17. 17.
    Aizawa T, Okogawa K, Yoshizawa M, Henmi N (2001) Impulse magnetic pressure seam welding of aluminum sheets. Impact Engineering and Applications 2001:827–832Google Scholar
  18. 18.
    Aizawa T, Okogawa K (2004) Impact seam welding with magnetic pressure for aluminum sheets. Mater Sci Forum 465:231–236CrossRefGoogle Scholar
  19. 19.
    Aizawa T (2004) Methods for electromagnetic pressure seam welding of Al/Fe sheets. Weld Int 18(11):868–872CrossRefGoogle Scholar
  20. 20.
    Kore SD, Date PP, Kulkarni SV (2006) Electromagnetic welding of Al sheets. Sheet Metal Welding Conference XII, AWS, Livonia, Michigan, Detroit, USA, 1–6 May 2006, pp 912Google Scholar
  21. 21.
    Kore SD, Date PP, Kulkarni SV (2007) Effect of process parameters on electromagnetic impact welding of Al sheets. Int J Impact Eng 34:1327–1341CrossRefGoogle Scholar
  22. 22.
    Kore SD, Date PP, Kulkarni SV (2008) Electromagnetic welding of Al to stainless steel sheets. J Mater Process Technol 208(1–3):486–493CrossRefGoogle Scholar
  23. 23.
    Kore SD, Date PP, Kulkarni SV, Kumar S, Rani D, Kulkarni MR, Desai SV, Rajawat RK, Nagesh KV, Chakravarty DP (2010) Electromagnetic impact welding of Cu to Cu sheets. Int J Mater Form 3:117–121CrossRefGoogle Scholar
  24. 24.
    Kore SD, Dhanesh P, Date PP, Kulkarni SV (2010) Numerical modeling of electromagnetic welding. Int J Appl Electromagnet Mech 32(1):1–19Google Scholar
  25. 25.
    Kore SD, Imbert J, Worswick MJ, Zhou Y (2009) Electromagnetic impact welding of Mg to Al sheets. Sci Technol Weld Joining 14(6):549–553CrossRefGoogle Scholar
  26. 26.
    Kore SD, Date PP, Kulkarni SV, Kumar S, Rani D, Kulkarni MR, Desai SV, Rajawat RK, Nagesh KV, Chakravarty DP (2009) Electromagnetic welding of Al-to-Al-Li Sheets, ASME. J Manuf Sci Eng 131(034502):1–4Google Scholar
  27. 27.
    Zhang Y, Babu SS, Zhang P, Kenik EA, Daehn GS (2008) Microstructure characterisation of magnetic pulse welded AA6061-T6 by electron backscattered diffraction. Sci Technol Weld Joining 13(5):467–471CrossRefGoogle Scholar
  28. 28.
    Blazynski TZ (ed) (1983) Explosive welding, forming, and compaction. Elsevier Science, New YorkGoogle Scholar
  29. 29.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50(1–2):1–78CrossRefMATHGoogle Scholar
  30. 30.
    Chengwu Y, Binshi X, Xiancheng Z, Jian H, Jun F, Yixiong W (2009) Interface microstructure and mechanical properties of laser welding copper–steel dissimilar joint. Opt Lasers Eng 47(7–8):807–814Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Sachin D. Kore
    • 1
  • P. P. Date
    • 2
  • S. V. Kulkarni
    • 3
  • Satendra Kumar
    • 4
  • Dolly Rani
    • 4
  • M. R. Kulkarni
    • 4
  • S. V. Desai
    • 4
  • R. K. Rajawat
    • 4
  • K. V. Nagesh
    • 4
  • D. P. Chakravarty
    • 4
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Mechanical Engineering DepartmentIIT BombayMaharshtraIndia
  3. 3.Electrical Engineering DepartmentIIT BombayMumbaiIndia
  4. 4.Accelerator and Pulse Power DivisionBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations