Analytical models of composite material drilling

  • Pierre RahméEmail author
  • Yann Landon
  • Frédéric Lachaud
  • Robert Piquet
  • Pierre Lagarrigue


Drilling of composite material structures is widely used for aeronautical assemblies. When drilling, damage to the composite laminate is directly related to the cutter geometry and the cutting conditions. Delamination of the composite materials at the hole exit as directly related to the axial force (F Z) of the cutter is considered to be the major such defect. To address this issue, an orthotropic analytical model is developed in order to calculate the critical force of delamination during drilling and a number of hypotheses for loading are proposed. This critical axial load is related to the delamination conditions (propagation of cracks in the last layers) and the mechanical characteristics of the composite material machined. A numerical model is also drawn up to allow for numerical validation of the analytical approach. A comparison between these analytical and numerical modellings and experimental results from quasi-static punch tests led to the choice of the loading hypothesis closest to the experimental conditions. The selection of corresponding load permits to model the drilling critical thrust force on delamination and then to optimise the cutting conditions. The dimensions and geometrical shape of the cutter are of considerable importance when it comes to choosing this load. The present article focuses on the case of the twist drill, which is commonly used to drill thick plates. However, this work can be adapted to different cutter geometries.


Drilling Composite materials Delamination Analytical models Numerical models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Piquet R, Ferret B, Lachaud F, Swider P (2000) Experimental analysis of drilling damage in thin carbon/epoxy plate using special drills. Compos A 31:1107–1115CrossRefGoogle Scholar
  2. 2.
    Hocheng H, Tsao CC (2005) The path towards delamination-free drilling of composite materials. J mater process technol 167(2-3):251–264, 30 August 2005Google Scholar
  3. 3.
    Rahmé P, Landon Y, Lagarrigue P, Piquet R, Lachaud F, Marguet B, Bourriquet J, Le Roy C (2006) Drilling of think composite structures – State of the art. SAE International Toulouse, ToulouseCrossRefGoogle Scholar
  4. 4.
    Rahmé P, Landon Y, Lachaud F, Piquet R, Lagarrigue P (2008) Study into causes of damage to carbon epoxy composite material during the drilling process. Int J Mach Mach Mater 3(3/4):309–325Google Scholar
  5. 5.
    Roudge M, Cherif M, Cahuc O, Darnis P, Danis M (2008) Multi layers materials - qualitative approach of the process. Int J Mater Form 1:949–952CrossRefGoogle Scholar
  6. 6.
    Ramulu M, Branson T, Kim D (2001) A study on the drilling of composite and titanium stacks. Compos Struct 54(1):67–77, October 2001CrossRefGoogle Scholar
  7. 7.
    Tsao CC, Chen WC (1997) Prediction of the location of delamination in the drilling of composite laminates. Int J Mater Process Technol 70:185–189CrossRefGoogle Scholar
  8. 8.
    Tsao CC, Hocheng H (2005) The effect of chisel length and associated pilot hole on delamination when drilling composite materials. Int J Mach Tools Manuf 43(11):1087–1092CrossRefGoogle Scholar
  9. 9.
    Pyo Jung J, Woo Kim G, Yong Lee K (2005) Critical thrust force at delamination propagation during drilling of angle-ply laminates. Compos Struct 68(4):391–397CrossRefGoogle Scholar
  10. 10.
    Hocheng H, Dharan CKH (1990) Delamination during drilling in composite laminates. ASME J Eng Ind 112:236–239CrossRefGoogle Scholar
  11. 11.
    Piquet R (1999) Thesis: Contribution à l’étude des réparations provisoires structurales aéronautiques. Etude du drilling de plaques minces en carbone/époxy. Thèse du Laboratoire de génie mécanique de Toulouse Université Paul Sabatier N°3339.Google Scholar
  12. 12.
    Lachaud F, Piquet R, Collombet F, Surcin L (2001) Drilling of composite structures. Compos Struct 52:511–516CrossRefGoogle Scholar
  13. 13.
    Timoshenko S, Woinowsky-Krieger S (1961) Theory of plates and shells. Librairie Polytechnique CH, BérangerGoogle Scholar
  14. 14.
    Furet B, Jolivel B, Le Borgne D (2005) Milling and drilling of composite materials for the aeronautics. JEC Composites 18:41–44Google Scholar
  15. 15.
    Gouleau S, Garnier S, Furet B (2006) Faisabilité du drilling d’empilages multi matériaux de type aluminium/composites. 4ème assises Machines et Usinage à Grande Vitesse. SYMAP – ENSAM, Aix en ProvenceGoogle Scholar
  16. 16.
    Bhatnagar N, Kumar Jalutharia M, Singh I (2008) Prediction of thrust force and torque when drilling composite materials. Int j mater prod technol 32(2-3):213–225CrossRefGoogle Scholar
  17. 17.
    Krishnamoorthy A, Rajendra Boopathy S, Palanikumar K (2009) Delamination analysis in drilling of CFRP composites using response surface methodology. J compos mater 43(24):2885–2902CrossRefGoogle Scholar
  18. 18.
    Rahmé P, Landon Y, Lagarrigue P, Piquet R, Lachaud F, Marguet B, Bourriquet J, Le Roy C (2009) Chisel edge effect on delamination when drilling thick composite materials with a twist drill. SAE Int J Aerosp 1:776–781, April 2009Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Pierre Rahmé
    • 1
    Email author
  • Yann Landon
    • 1
  • Frédéric Lachaud
    • 1
  • Robert Piquet
    • 1
  • Pierre Lagarrigue
    • 1
  1. 1.Université de Toulouse; INSA, UPS, Mines Albi, ISAE; ICA (Institut Clément Ader)Toulouse CedexFrance

Personalised recommendations