Advertisement

Experimental study on operating temperature in laser-assisted milling of silicon nitride ceramics

  • Xinwei Shen
  • Shuting Lei
ORIGINAL ARTICLE

Abstract

Operating temperature plays a significant role in laser-assisted milling (LAMill) of silicon nitride ceramics. Understanding the features of temperature variation can improve the performance of LAMill. Based on the analysis of operating temperature, this paper aims to provide guidelines on parameter selection for LAMill from three aspects: laser–silicon nitride interaction mechanism, effect of parameters on temperature, and evaluation of surface quality of the machined workpieces. First, the laser–silicon nitride interaction mechanism is explored via heating experiments. It is found that the formation of silica bubbles at the thin top layer of the workpiece can slightly increase the temperature of silicon nitride workpieces due to the heat energy released from the oxidation process. Then, the trends of temperature variations in LAMill are obtained through a parametric study. The key parameters such as laser power, laser beam diameter, feed rate, and preheat time are highlighted. At last, the surface quality of the machined workpieces under different operating temperatures is evaluated in terms of edge chipping, surface finish, and surface residual stress. It is shown that high operating temperature leads to low cutting force, good surface finish, small edge chipping, and low residual stress. In addition, the temperature range for brittle-to-ductile transition should be avoided since the cutting force decreases slowly due to the rapid increase of fracture toughness.

Keywords

Laser-assisted milling (LAMill) Silicon nitride ceramics Operating temperature Silica bubble Laser–silicon nitride interaction mechanism Brittle-to-ductile transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    König W, Zaboklicki AK (1993) Laser-assisted hot machining of ceramics and composite materials. NIST Spec Publ 847:455–463Google Scholar
  2. 2.
    Westkäemper E (1995) Grinding assisted by Nd:YAG lasers. CIRP Ann - Manuf Technol 44(1):317–320CrossRefGoogle Scholar
  3. 3.
    Marinescu ID (1998) Laser-assisted grinding of ceramics. InterCeram 47(5):314–316MathSciNetGoogle Scholar
  4. 4.
    Rozzi JC, Pfefferkorn FE, Incropera FP, Shin YC (1998) Transient thermal response of a rotating cylindrical silicon nitride workpiece subjected to a translating laser heat source. Part I: comparison of surface temperature measurements with theoretical results. J Heat Transf 120(4):899–905CrossRefGoogle Scholar
  5. 5.
    Lei S, Shin YC, Incropera FP (2001) Experimental investigation of thermo-mechanical characteristics in laser-assisted machining of silicon nitride ceramics. J Manuf Sci Eng 123:639–646CrossRefGoogle Scholar
  6. 6.
    Rebro PA, Shin YC, Incropera FP (2004) Design of operating conditions for crackfree laser-assisted machining of mullite. Int J Mach Tools Manuf 44(7–8):677–694CrossRefGoogle Scholar
  7. 7.
    Pfefferkorn FE, Shin YC, Tian Y, Incropera FP (2004) Laser-assisted machining of magnesia–partially-stabilized zirconia. J Manuf Sci Eng, Trans ASME 126(1):42–51CrossRefGoogle Scholar
  8. 8.
    Tian Y, Shin YC (2006) Thermal modeling for laser-assisted machining of silicon nitride ceramics with complex features. J Manuf Sci Eng Trans ASME 128(2):425–434CrossRefGoogle Scholar
  9. 9.
    Chang C-W, Kuo C-P (2007) An investigation of laser-assisted machining of Al2O3 ceramics planning. Int J Mach Tools Manuf 47(3–4):452–461CrossRefGoogle Scholar
  10. 10.
    Shen X, Liu W, Lei S (2005) Three-dimensional thermal analysis for laser assisted milling of silicon nitride ceramics using FEA. Am Soc Mech Eng Manuf Eng Div MED 16–1:445–452Google Scholar
  11. 11.
    Yang B, Lei S (2008) Laser-assisted milling of silicon nitride ceramic: a machinability study. Int J Mechatronics and Manufacturing Systems 1(1):116–130CrossRefMathSciNetGoogle Scholar
  12. 12.
    Tian Y, Wu B, Anderson M, Shin YC (2008) Laser-assisted milling of silicon nitride ceramics and Inconel 718. J Manuf Sci Eng 130(3):031013-1-9CrossRefGoogle Scholar
  13. 13.
    Shen X, Lei S (2009) Thermal modeling and experimental investigation for laser assisted milling of silicon nitride ceramics. J Manuf Sci Eng, Trans ASME 131(5):051007-1-10CrossRefGoogle Scholar
  14. 14.
    Heuvelman CJ, König W, Töenshoff HK, Meijer J, Kirner PK, Rund M, Schneider MF, van Sprang I (1992) Surface treatment techniques by laser beam machining. CIRP Ann 41(2):657–666CrossRefGoogle Scholar
  15. 15.
    Mikhailova GN, Mikhailov BP, Troitskii AV (2004) Laser welding of HTSC ceramics. Laser Phys Lett (Germany) 1(10):525–527CrossRefGoogle Scholar
  16. 16.
    Tsai C-H, Chen H-W (2004) The laser shaping of ceramic by a fracture machining technique. Int J Adv Manuf Technol 23(5–6):342–349CrossRefGoogle Scholar
  17. 17.
    Samant AN, Dahotre NB (2008) Computational predictions in single-dimensional laser machining of alumina. International Journal of Machine Tools and Manufacture 48(12–13):1345–1353CrossRefGoogle Scholar
  18. 18.
    Samant AN, Dahotre NB (2008) Ab initio physical analysis of single dimensional laser machining of silicon nitride. Adv Eng Mater 10(10):978–981CrossRefGoogle Scholar
  19. 19.
    Samant AN, Dahotre NB (2009) An integrated computational approach to single-dimensional laser machining of magnesia. Opt Lasers Eng 47(5):570–577CrossRefGoogle Scholar
  20. 20.
    Samant AN, Dahotre NB (2009) Differences in physical phenomena governing laser machining of structural ceramics source. Ceram Int 35(5):2093–2097CrossRefGoogle Scholar
  21. 21.
    Samant AN, Daniel C, Chand RH, Blue CA, Dahotre NB (2009) Computational approach to photonic drilling of silicon carbide. International Journal of Advanced Manufacturing Technology 45(7–8):704–713CrossRefGoogle Scholar
  22. 22.
    Samant AN, Dahotre NB (2009) Physical effects of multipass two dimensional laser machining of structural ceramics. Advanced Engineering Materials 11(7):579–585CrossRefGoogle Scholar
  23. 23.
    Tian Y, Shin YC (2006) Laser-assisted machining of damage-free silicon nitride parts with complex geometric features via in-process control of laser power. J Am Ceram Soc 89(11):3397–3405CrossRefGoogle Scholar
  24. 24.
    Lange FF (1972) Dense Si3N4 and SiC: some critical properties for gas turbine application. The Gas Turbine and Fluids Engineering Conference & Producers Show. Am Soc Mech Eng 1–8Google Scholar
  25. 25.
    Hampshire S (1991) Engineering properties of nitrides. Eng Mater Handb - Ceramics and Glasses 4:812–819Google Scholar
  26. 26.
    Khosrofian JM, Garetz BA (1983) Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data. Appl Opt 22(21):3406–3410CrossRefGoogle Scholar
  27. 27.
    Lavrenko VA, Gogotsi YuG, Goncharuk AB, Alekseev AF, Grigorev ON, Shcherbina OD (1985) High-temperature oxidation of reaction-sintered silicon nitride with various additions. Sov Powder Metall Met Ceram 24(3):207–210Google Scholar
  28. 28.
    Bushby AJ (1994) Surface oxidation of a sintered silicon nitride: implications for mechanical properties. International Ceramic Monograph, Proceedings of the International Ceramics Conference Austceram 94(2):1007–1012Google Scholar
  29. 29.
    Howlett SP, Morrell R, Taylor R (1986) The effects of oxidation on the thermal diffusivity of reaction bonded silicon nitride. Br Ceram Proc 37:81–94Google Scholar
  30. 30.
    Taguchi SP, Ribeiro S (2004) Silicon nitride oxidation behaviour at 1000 and 1200°C. J Mater Process Technol 147(3):336–342CrossRefGoogle Scholar
  31. 31.
    Singhal SC (1976) Thermodynamics analysis of the high temperature stability of silicon, nitrogen, silicon-nitride. Ceramurgia 2:123–130CrossRefGoogle Scholar
  32. 32.
    Morita N (1993) Crack-free processing of hot-pressed silicon nitride ceramics using pulsed YAG laser. NIST Spec Publ 847:517–526Google Scholar
  33. 33.
    Maruo H, Miyamoto I, Ooie T (1992) Processing mechanism of ceramics with high intensity lasers. Proceedings of LAMP’92 Nagaoka 293–298Google Scholar
  34. 34.
    Batha HD, Whitney ED (1973) Kinetics and mechanism of the thermal decomposition of Si3N4. J Am Ceram Soc 56(7):365–369CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Modest MF (1998) Temperature-dependent absorptances of ceramics for Nd:YAG and CO2 laser processing applications. J Heat Transf 120(2):322–327CrossRefGoogle Scholar
  36. 36.
    McColm IJ (1983) Ceramic science for materials technologists. Leonard Hill, Chapman and Hall, New YorkGoogle Scholar
  37. 37.
    Themelin L, Desmaison-Brut M, Billy M (1993) Oxidation behaviour of a hot isostatically pressed silicon nitride material. J Phys IV 3:881–888CrossRefGoogle Scholar
  38. 38.
    Töenshoff HK, Gedrat O (1991) Absorption behavior of ceramic materials irradiated with excimer-lasers. Proc SPIE Int Soc Opt Eng 1377:38–44Google Scholar
  39. 39.
    Mutoh Y, Miyahara N, Yamaishi K, Oikawa T (1993) High temperature fracture toughness in silicon nitride and sialon. Trans ASME, J Eng Mater Technol (USA) 115(3):268–272CrossRefGoogle Scholar
  40. 40.
    Yang B, Shen X, Lei S (2009) Mechanisms of edge chipping in laser-assisted milling of silicon nitride ceramics. International Journal of Machine Tools and Manufacture 49(3–4):344–350CrossRefGoogle Scholar
  41. 41.
    ASTM Standard E1426, 98 (2003) Standard test method for determining the effective elastic parameter for x-ray diffraction measurements of residual stress. ASTM International, West Conshohocken, PA. doi: 10.1520/E1426-98R03, www.astm.org
  42. 42.
    Yang B, Sun JG, Frink E, Lei S, Lease K (2009) Assessment of part quality in laser assisted milling of silicon nitride ceramic. The Proceedings of the 2009 ICALEO Congress, Laser Materials Processing Conference 489–498Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Department of Industrial and Manufacturing Systems EngineeringKansas State UniversityManhattanUSA
  2. 2.ManhattanUSA

Personalised recommendations