Advertisement

Effect of path planning on the laser powder deposition process: thermal and structural evaluation

  • Ehsan Foroozmehr
  • Radovan KovacevicEmail author
ORIGINAL ARTICLE

Abstract

In this study, ANSYS finite element software is used to simulate the temperature and stress field in the laser powder deposition process. The model is used to determine the effect of the deposition pattern on the final stress distribution. Four deposition patterns are defined to cover the same area: long bead, short bead, spiral in, and spiral out. The results show that the deposition pattern significantly affects the temperature history of the process, and consequently, the stress distribution. Among the four deposition patterns, the spiral-in pattern shows the highest and the short-bead pattern shows the lowest maximum residual stress. The modeling results are verified with experiments.

Keywords

Finite element method Laser powder deposition Residual stress Deposition pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kovacevic R (2006) System and method for fabrication or repairing part. US Patent #7,020,539Google Scholar
  2. 2.
    Kovacevic R, Hu D, Valant M, (2007) System and method for controlling the size of the molten pool in laser-based additive manufacturing. US patent #6,995,334 B1Google Scholar
  3. 3.
    Toyserkani E, Khajepour A, Corbin SF (2006) System and method for intelligent closed-loop control of laser cladding by powder injection. Granted US patent #7043330Google Scholar
  4. 4.
    Choi J, Chang Y (2005) Characteristics of laser aided direct metal/material deposition process for tool steel. Int J Mach Tools Manuf 45:597–607CrossRefGoogle Scholar
  5. 5.
    Choi J, Hua Y (2004) Dimensional and material characteristics of direct deposited H13 tool steel by CO2 laser. J Laser Appl 16–4:245–251CrossRefGoogle Scholar
  6. 6.
    Ghosh S, Choi J (2007) Deposition pattern based thermal stresses in single-layer laser-aided direct material deposition process. J Manuf Sci Eng Trans ASME 129:319–332CrossRefGoogle Scholar
  7. 7.
    Kahlen FJ, Kar A (2001) Residual stress in laser-deposited metal parts. J Laser Appl 13–2:60–69CrossRefGoogle Scholar
  8. 8.
    Deus AM, Mazumder J (1996) Two-dimensional thermo-mechanical finite element model for laser cladding. Proc ICALEO96, Orlando, FL B/174-B/183Google Scholar
  9. 9.
    Vasinonta A, Beuth JL, Griffith ML (1999) Process maps for laser deposition of thin-walled structures. Proc 1999 Solid Freeform Fabrication Symp, Austin, TX, ed. Bourel et al, 383–391Google Scholar
  10. 10.
    Vasinonta A, Beuth JL, Griffith ML (2000) Process maps for controlling residual stress and melt pool size in laser-based SFF processes. Proc 2000 Solid Freeform Fabrication Symp, Austin, TX ed. Bourel et al 383–391Google Scholar
  11. 11.
    Labudovic M, Hu D, Kovacevic R (2003) A three-dimensional model for direct laser metal powder deposition and rapid prototyping. J Mater Sci 38-1:35–49CrossRefGoogle Scholar
  12. 12.
    Dai K, Shaw L (2001) Thermal and stress modeling of multi-material laser processing. Acta Mater 49:4171–4181CrossRefGoogle Scholar
  13. 13.
    Costa L, Reti T, Deus AM, Vilar R (2002) Simulation of layer overlap tempering kinetics in steel parts deposited by laser cladding. Proc 2002 Intrl Conf. Metal Powder Deposition Rapid Manuf San Antonio, TX ed. D. Keicher et al. 172–179Google Scholar
  14. 14.
    Costa L, Deus A.M, Reti T, Vilar R (2002) Simulation of layer overlap tempering in steel parts produced by laser cladding. Jorge J et al (ed) Proc RPD 2002 Advanc Solu Devel Marinha Grande, PortugalGoogle Scholar
  15. 15.
    Jendrzejewski R, Sliwinski G, Krawczuk M, Ostachowicz W (2004) Temperature and stress fields induced during laser cladding. J Comput Struct 82:653–658CrossRefGoogle Scholar
  16. 16.
    Bendeich P, Alam N, Brandt M, Carr D, Short K, Blevins R, Curfs C, Kirstein O, Atkinson G, Holden T, Rogge R (2006) Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry. J Mater Sci Eng A 437:70–74CrossRefGoogle Scholar
  17. 17.
    Richter KH, Orban S, Nowotny S (2004) Laser cladding of the titanium alloy Ti6242 to restore damaged blades. Proc 23rd Interl Congress Appl Lasers Electro-OpticsGoogle Scholar
  18. 18.
    Nickel AH, Barnett DM, Prinz FB (2001) Thermal stresses and deposition patterns in layered manufacturing. J Mater Sci Eng A 317:59–64CrossRefGoogle Scholar
  19. 19.
    Plati A, Tan JC, Golosnoy IO, Persoons R, Acker K, Clyne TW (2006) Residual stress generation during laser cladding of steel with a particulate metal matrix composite. J Adv Eng Mater 8–7:619–624CrossRefGoogle Scholar
  20. 20.
    Neela V, De A (2007) Numerical modeling of LENS process using special element features. Proc 2007 Abaqus India Regional Users’ MeetGoogle Scholar
  21. 21.
    Gosh S, Choi J (2006) Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser-aided DMD process. J Heat Trans 128–7:662–679CrossRefGoogle Scholar
  22. 22.
    Ghosh S, Choi J (2007) Deposition pattern based thermal stresses in single-layer laser-aided direct material deposition process. J Manuf Sci Eng 129:319–332CrossRefGoogle Scholar
  23. 23.
    Ghosh S, Choi J (2004) Three-dimensional transient finite element analysis for microstrucutre formation and residual stress in laser-aided DMD process. Proc 2004 ASME Heat Transfer/Fluids Eng Summer Conf, Charlotte, NC: 969–978Google Scholar
  24. 24.
    Mochizuki M, Toyoda M (2007) Strategy of considering microstructure effect on welding residual stress analysis. J Pressure Vessel Technol Trans ASME 129:619–629CrossRefGoogle Scholar
  25. 25.
    Borjesson L, Lindgren LE (2001) Simulation of multipass welding with simultaneous computation of material properties. J Eng Mater Technol 123:106–111CrossRefGoogle Scholar
  26. 26.
    Foroozmehr E, Kovacevic R (2009) Thermo-kinetic modeling of phase transformation in laser powder deposition. Metall Mat Trans A Phys Metall Mat Sci 40–8:1935–1943CrossRefGoogle Scholar
  27. 27.
    Documentation for ANSYS, Release 11.0, Ch. 13, Element birth and deathGoogle Scholar
  28. 28.
    Sarrafi R, Lin D, Kovacevic R (2009) Surface treatment by variable-polarity arc to promote the energy absorption in laser welding of aluminum alloy Proc TMS 2009, San Francisco, CAGoogle Scholar
  29. 29.
    Neto O, Vilar R (2002) Physical computational model to describe the interaction between a laser beam and a powder jet in laser surface processing. J Laser Appl 14–1:46–51CrossRefGoogle Scholar
  30. 30.
    Totten G, Howes M, Inoue T, Handbook or residual stress and deformation of steel, ASM InternationalGoogle Scholar
  31. 31.
    Documentation for ANSYS, Release 11.0, Ch. 4, Structures with material nonlinearitiesGoogle Scholar
  32. 32.
    Wang G, Chen Y, Zhang H (2003) Effect of scanning path on the deposition process in rapid plasma spray tooling: modeling by homogenization theory. J Thin Solid Films 435:124–130CrossRefGoogle Scholar
  33. 33.
    PROTP Manufacturing. http://www.protoxrd.com/lxrd.htm. Accessed June 2009

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Center for Laser Aided Manufacturing (CLAM)Southern Methodist UniversityDallasUSA

Personalised recommendations