Material removal characteristics of microslot (kerf) geometry in μ-WEDM on aluminum

  • Kodalagara Puttanarasaiah Somashekhar
  • Nottath Ramachandran
  • Jose Mathew


This paper presents the formulation and solution of optimization of various process parameters for the selection of the best control settings on a microwire electrical discharge machining process. A factorial design model is used to predict the measures of performance as a function of various control settings. Analysis of variance is used to indicate the significant factors. Regression models relating the machining performance are established. The performance measures taken for the model are material removal rate (MRR), overcut, and surface roughness. At discharge energy of 2,645 μJ, maximum MRR of 0.0428 mm3/min and an overcut value of 69 μm are observed. With the value of discharge energy changing from 32 to 4,500 μJ, the Ra value of slot surface varied from 1.17 to 4.25 μm. The analysis gave the average erosion efficiency around of 27%, which showed high sensitivity to the selected discharge energy levels.


μ-WEDM Discharge energy Overcut Surface roughness Material removal rate Erosion efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Accessed 18 May 2007
  2. 2. Accessed 25 July 2008
  3. 3.
    Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300CrossRefGoogle Scholar
  4. 4.
    Pham DT, Demov SS, Bigot S, Ivanov A, Popov K (2004) Micro-EDM—recent developments and research issues. J Mater Process Technol 149:50–57CrossRefGoogle Scholar
  5. 5.
    Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44:1247–1259CrossRefGoogle Scholar
  6. 6.
    Rajurkar KP, Wang WM (1993) Thermal modeling and on-line monitoring of wire EDM. J Mater Process Technol 38(1–2):417–430CrossRefGoogle Scholar
  7. 7.
    Sadiq MA, Rahman M, Lim HS (2008) Study of WEDM parameter phenomena for micro fabrication. Int J Manuf Technol Manag 13(2–4):226–240Google Scholar
  8. 8.
    Miller SF, Kao C-C, Shih AJ, Qu J (2005) Investigation of wire electrical discharge machining of thin cross-sections and compliant mechanisms. Int J Mach Tools Manuf 45:1717–1725CrossRefGoogle Scholar
  9. 9.
    Jin Y, Wang K, Tao Y, Fang M (2008) Reliable multi-objective optimization of high speed WEDM process based on Gaussian process regression. Int J Mach Tools Manuf 48:47–60CrossRefGoogle Scholar
  10. 10.
    Kanlayasiri K, Booming (2007) Effect of machining variables on the surface roughness of wire EDMed DC53 die steel: design of experiments and regression model. J Mater process Technol 192:459–464CrossRefGoogle Scholar
  11. 11.
    Gauri SK, Chakraborty S (2009) Optimize the multiple response of WEDM process using weighted principle components. Int J Adv Manuf Technol 40:1102–1110. doi: 10.1007/s00170-008-1429-1 CrossRefGoogle Scholar
  12. 12.
    Manna A, Bhattacharya B (2006) Taguchi and Gauss elimination method: a dual response approach for parametric optimization of CNC wire cut EDM of PRAISiCMMC. Int J Adv Manuf Technol 28:67–75CrossRefGoogle Scholar
  13. 13.
    Lin JL, Lin CL (2005) The use of orthogonal array with gray relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. Int J Mach Tools Manuf 42:237–244CrossRefGoogle Scholar
  14. 14.
    Mahapatra SS, Patnaik A (2006) Parametric optimization of wire electric discharge machining (WEDM) process using Taguchi method. J Braz Soc Mech Sci Eng 58(4):423–429Google Scholar
  15. 15.
    Hao T, Wang Y, Li Y (2007) Vibration assisted servo scanning 3D micro EDM. J Micromech Microeng 18:25011–25019CrossRefGoogle Scholar
  16. 16.
    Qu AJ Shih, RO S (2002) Development of the cylindrical wire electrical discharge machining process: part І: concept, design and material removal rate. ASME J Manuf Sci Eng 124(3):702–707CrossRefGoogle Scholar
  17. 17.
    Qu AJ Shih, RO S (2002) Development of the cylindrical wire electrical discharge machining process: part ІІ: surface integrity and roundness. J Manuf Sci Eng 124(4):708–714CrossRefGoogle Scholar
  18. 18.
    Mathew J, Suresh Kumar VB, Somashekhar KP (2007) Investigation into the influence of process parameters on Micro Wire EDM. International Conference on Precision, Meso, Micro & Nano Engineering (Copen 2007), pp 287–294Google Scholar
  19. 19.
    Mathew J, Somashekhar KP, Sooraj VS, Subbarao N, Ramachandran N (2008) Effect of work material and machining conditions on efficiency and accuracy of micro electric discharge drilling. Proceedings of eighth APCMP, China, June 2008, pp 550–558Google Scholar
  20. 20.
    Somashekhar KP, Subbarao N, Mathew J (2008) Effect of discharge conditions on the performance of micro electric discharge machining. Proceedings of AIMTDR, Madras, 2008, pp 615–620Google Scholar
  21. 21.
    Somashekhar KP, Mathew J (2008) Fabrication of microelectrode for micro EDM operation using micro WEDG. Proceedings of AIMTDR, Madras, 2008, pp 639–644Google Scholar
  22. 22.
    Somashekhar KP, Ramachandran N, Mathew J (2009) Modeling and optimization of process parameters in micro wire EDM by genetic algorithm. Adv Mat Res 76–78:566–570CrossRefGoogle Scholar
  23. 23.
    Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York, pp 427–500Google Scholar
  24. 24.
    Mehfuz R, Ali MY (2009) Investigations of machining parameters for multiple-response optimization of micro electric discharge milling. Int J Adv Manuf Technol 43:264–275CrossRefGoogle Scholar
  25. 25.
    Jahan MP, Wong YS, Rahman M (2010) A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Technol 46:1145–1160CrossRefGoogle Scholar
  26. 26.
    Lim HS, Wang YS, Rahman M, Edwin MK (2003) A study on machining of high aspect ratio micro structures using micro EDM. J Mater Process Technol 140:318–325CrossRefGoogle Scholar
  27. 27.
    Wong YS, Rahman M, Lim HS, Han H, Ravi N (2003) Investigation of micro-EDM using single RC-pulse discharges. J Mater Process Technol 140:303–307CrossRefGoogle Scholar
  28. 28.
    Han F, Wachi S, Kunieda M (2004) Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precis Eng 28:378–385CrossRefGoogle Scholar
  29. 29.
    Amorim FL, Weingaertner WL (2005) The influence of generator actuation mode and process parameters on the performance of finish EDM of tool steel. J Mater Process Technol 166:411–416CrossRefGoogle Scholar
  30. 30.
    Yan MT, Chien HT (2006) Monitoring and control of the micro wire-EDM process. Int J Mach Tools Manuf 47(1):148–157CrossRefGoogle Scholar
  31. 31.
    Liao YS, Huang JT, Chen YH (2004) A study to achieve a fine surface in wire-EDM. J Mater Process Technol 149(1–3):165–171CrossRefGoogle Scholar
  32. 32.
    Yan MT, Lai YP (2007) Surface quality improvement of wire-EDM using a fine-finish power supply. Int J Mach Tools Manuf 47(11):1686–1694CrossRefGoogle Scholar
  33. 33.
    Kozak J, Rajurkar KP, Chandarana N (2004) Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). J Mater Process Technol 149:266–271CrossRefGoogle Scholar
  34. 34.
    Mishra PK (2006) Nonconventional Machining, 5th edn. The Institution of Engineers, Narosa Publishing House, India, pp 81–146Google Scholar
  35. 35.
    Mathew J, Somashekhar KP, Sooraj VS, Subbarao N, Ramachandran N (2009) Effect of work material and machining conditions on the accuracy and quality of micro holes. Int J Abras Technol 2(3):279–298CrossRefGoogle Scholar
  36. 36.
    Kuriakose S, Mohan K, Shunmugam MS (2003) Data mining applied to wire-EDM process. J Mater Process Technol 142:182–189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Kodalagara Puttanarasaiah Somashekhar
    • 1
  • Nottath Ramachandran
    • 1
  • Jose Mathew
    • 1
  1. 1.Advanced Manufacturing Centre, MED, NITCCalicutIndia

Personalised recommendations