Representation and similarity assessment in case-based process planning and die design for manufacturing automotive panels

  • Chun-Fong YouEmail author
  • Yi-Lung Tsai
  • Kun-Yu Liu


This work improves process planning and die design in automotive panel manufacturing using a novel case-based reasoning (CBR) methodology. An innovative indexing representation and retrieval approach are also addressed. The flat-bend graph, which is utilized to represent a panel model with a B-rep structure, retains geometric and topological data in the Standard for the Exchange of Product model data format. Flat-type faces collected into several groups are represented by graph nodes, and bend-type faces are represented by graph arcs. Based on the topological information between bend-type faces and flat-type faces, a graph is constructed. Additionally, the holes detected are considered another graph node types. Geometric information and stamping parameters are utilized as graph attributes. To retrieve an appropriate case for a potentially huge search space, independent maximal cliques detection is applied. All independent maximal cliques that represent the maximum number of features shared by models are identified. Based on the retrieval result, previous process plans and die sets can be acquired for use by new cases. Experimental results obtained using the CBR system integrated with the product data management system demonstrate the practicality of reusing previous designs to accelerate stamping process planning and die design.


Automotive panel stamping Case-based reasoning Graph-based representation Similarity assessment Process planning and die design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheok BT, Nee AYC (1998) Trends and developments in the automation of design and manufacture of tools for metal stampings. J Mater Process Tech 75(1–3):240–252CrossRefGoogle Scholar
  2. 2.
    Ullman DG (1997) The mechanical design process, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Riesbeck CK, Schank R (1989) Inside case-based reasoning. Erlbaum, Northvale, NJGoogle Scholar
  4. 4.
    Watson I (1999) Case-based reasoning is a methodology not a technology. Knowl-Based Syst 12(5–6):303–308. doi: 10.1016/S0950-7051(99)00020-9 CrossRefGoogle Scholar
  5. 5.
    Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K (2005) Three-dimensional shape searching: state-of-the-art review and future trends. Comput-Aided Des 37(5):509–530. doi: 10.1016/j.cad.2004.07.002 CrossRefGoogle Scholar
  6. 6.
    Cardone A, Gupta SK, Karnik M (2003) A survey of shape similarity assessment algorithms for product design and manufacturing applications. ASME Journal Comput Inf Sci Eng 3(2):109–118. doi: 10.1115/1.1577356 CrossRefGoogle Scholar
  7. 7.
    You CF, Chao SN (2006) Multilayer architecture in collaborative environment. Concurr Eng Res Appl 14(4):273–281. doi: 10.1177/1063293X06073128 CrossRefGoogle Scholar
  8. 8.
    Sycara K, Navin Chandra D, Guttal R, Koning J, Narasimhan S (1991) CADET: a case-based synthesis tool for engineering design. In J Expert Syst 4(2):157–188Google Scholar
  9. 9.
    Sun SH, Chen JHL (1996) A fixture design system using case-based reasoning. Eng Appl Artif Intel 9(5):533–540. doi: 10.1016/0952-1976(96)00048-6 CrossRefMathSciNetGoogle Scholar
  10. 10.
    Tiwari MK, Kotaiah KR, Bhatnagar S (2001) A case-based computer-aided process-planning system for machining prismatic components. Int J Adv Manuf Technol 17(6):400–411. doi: 10.1007/s001700170158 CrossRefGoogle Scholar
  11. 11.
    O’Connor LJ, Partridege LMS, DR LJMF (1992) A case-based reasoning approach to automated weld-process design. Appl Artif Intell 6(3):315–330CrossRefGoogle Scholar
  12. 12.
    Kwong CK (2001) A case-based system for process design of injection moulding. Int J Comput Appl T 14(1–3):40–50. doi: 10.1504/IJCAT.2001.000259 CrossRefGoogle Scholar
  13. 13.
    Lei Y, Peng Y, Ruan X (2001) Applying case-based reasoning to cold forging process planning. J Mater Process Technol 112(1):12–16. doi: 10.1016/S0924-0136(00)00852-9 CrossRefGoogle Scholar
  14. 14.
    Lee KS, Luo C (2002) Application of case-based reasoning in die-casting die design. Int J Adv Manuf Tech 20(4):284–295. doi: 10.1007/s001700200154 CrossRefGoogle Scholar
  15. 15.
    Tor SB, Britton GA, Zhang WY (2003) Indexing and retrieval in metal stamping die design using case-based reasoning. J Comput Inf Sci Eng 3(4):353–362. doi: 10.1115/1.1630339 CrossRefGoogle Scholar
  16. 16.
    Zhang WY, Tor SB, Britton GA (2006) Indexing and retrieval in case-based process planning for multi-stage non-axisymmetric deep drawing. Int J Adv Manuf Tech 28(1–2):12–22. doi: 10.1007/s00170-004-2333-y zbMATHCrossRefGoogle Scholar
  17. 17.
    Liu W, Yang YY, Xing ZW (2004) Study on process decision methodology for sheet metal stamping by case based technology. Mater Sci Forum 471–472:895–899CrossRefGoogle Scholar
  18. 18.
    Leake DB, Birnbaum L, Hammond K, Marlow C, Yang H (1999) Integrating diverse information resources in a case-based design environment. Eng Appl Artif Intel 12(6):705–716. doi: 10.1016/S0952-1976(99)00042-1 CrossRefGoogle Scholar
  19. 19.
    Chen G, Chen J, Zhao Z, Ruan XY (2005) An object-oriented hierarchical case representation of automotive panels in a computer-aided process planning system. Int J Adv Manuf Tech 26(11–12):1323–1330. doi: 10.1007/s00170-004-2105-8 CrossRefGoogle Scholar
  20. 20.
    Tangelder JWH, Veltkamp RC (2008) A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications 39(3):441–471. doi: 10.1007/s11042-007-0181-0 CrossRefGoogle Scholar
  21. 21.
    Iyer S, Nagi R (1997) Automated retrieval and ranking of similar parts in agile manufacturing. IIE Trans 29(10):859–876Google Scholar
  22. 22.
    Hermann JW, Singh G (1997) Design similarity measures for process planning and design evaluation. Technical Research Report, TR97-74. Institute of Systems Research, University of Maryland, College ParkGoogle Scholar
  23. 23.
    Osada R, Funkhouser T, Chazelle B, Dobkin D (2001) Matching 3D models with shape distributions. Shape Modeling International, Genoa, pp 154–166Google Scholar
  24. 24.
    Ip CY, Lapadat D, Sieger L, Regli WC (2002) Using shape distributions to compare solid models. Proceedings of the 7th ACM Symposium on Solid Modeling and Applications, Saarbrucken, 17–21 Jun 2002, pp 273–280Google Scholar
  25. 25.
    Hong T, Lee K, Kim S (2006) Similarity comparison of mechanical parts to reuse existing designs. Comput-Aided Des 38(9):973–984. doi: 10.1016/j.cad.2006.05.004 CrossRefGoogle Scholar
  26. 26.
    McWherter D, Peabody M, Regli WC, Shokoufandeh A (2001) An approach to indexing databases of graphs. Technical report, Drexel University, PhiladelphiaGoogle Scholar
  27. 27.
    Bespalov D, Regli WC, Shokoufandeh A (2006) Local feature extraction and matching partial objects. Comput-Aided Des 38(9):1020–1037. doi: 10.1016/j.cad.2006.07.005 CrossRefGoogle Scholar
  28. 28.
    Biasotti S, Marini S, Spagnuolo M, Falcidieno B (2006) Sub-part correspondence by structural descriptors of 3D shapes. Comput-Aided Des 38(9):1002–1019. doi: 10.1016/j.cad.2006.07.003 CrossRefGoogle Scholar
  29. 29.
    You CF, Tsai YL (2009) 3D solid model retrieval for engineering reuse based on local feature correspondence. Int J Adv Manuf Technol 46(5–8):649–661. doi: 10.1007/s00170-009-2113-9 Google Scholar
  30. 30.
    Liu W, He Y (2008) Representation and retrieval of 3D CAD models in parts library. Int J Adv Manuf Technol 30(9–10):950–958. doi: 10.1007/s00170-006-0914-7 Google Scholar
  31. 31.
    Sundar H, Silver D, Gagvani N, Dickinson S (2003) Skeleton based shape matching and retrieval. Proceedings of the Shape Modeling International, Seoul, 12–15 May 2003, pp 130–139Google Scholar
  32. 32.
    El-Mehalawi M, Miller RA (2003) A database system of mechanical components based on geometric and topological similarity. Part I: representation. Comput-Aided Des 35(1):83–94. doi: 10.1016/S0010-4485(01)00177-4 CrossRefGoogle Scholar
  33. 33.
    El-Mehalawi M, Miller RA (2003) A database system of mechanical components based on geometric and topological similarity. Part II: indexing, retrieval, matching and similarity assessment. Comput-Aided Des 35(1):95–105. doi: 10.1016/S0010-4485(01)00178-6 CrossRefGoogle Scholar
  34. 34.
    Hilaga M, Shinagawa Y, Kohmura T, Kunii TL (2001) Topology matching for fully automatic similarity estimation of 3D shapes. Proceedings of ACM SIGGRAPH, Los Angeles, 12–17 Aug 2001, pp 203–212Google Scholar
  35. 35.
    Chen DY, Ouhyoung M (2002) A 3D object retrieval system based on multi-resolution reeb graph. Proceeding of Computer Graphics Workshop, Taiwan, June 2002Google Scholar
  36. 36.
    Bespalov D, Regli WC, Shokoufandeh A (2003) Reeb graph-based shape retrieval for CAD. Proceedings of the ASME DETC ’03 Computers and Information in Engineering Conference, Chicago, 2–6 Sept 2003Google Scholar
  37. 37.
    Iyer N, Kalyanaraman Y, Lou K, Jayanti S, Ramani K (2003) A reconfigurable 3D engineering shape search system Part I: shape representation. Proceedings of the ASME DETC ’03 Computers and Information in Engineering Conference, Chicago, 2–6 Sept 2003Google Scholar
  38. 38.
    Lou K, Jayanti S, Iyer N, Kalyanaraman Y, Ramani K, Prabhakar S (2003) A reconfigurable 3D engineering shape search system Part II: database indexing, retrieval and clustering. Proceedings of the ASME DETC ’03 Computers and Information in Engineering Conference, Chicago, 2–6 Sept 2003Google Scholar
  39. 39.
    Elinson A, Nau D, Regli WC (1997) Feature-based similarity assessment of solid models. Proceedings of the fourth ACM SIGGRAPH Symposium on Solid Modeling and Applications, Atlanta, 14–16 May 1997, pp 297–310Google Scholar
  40. 40.
    Ramesh M, Yip-Hoi D, Dutta D (2001) Feature based shape similarity measurement for mechanical parts. J Comput Inf Sci Eng 1(3):245–256. doi: 10.1115/1.1412456 CrossRefGoogle Scholar
  41. 41.
    Cicirello V, Regli WC (2001) Machining feature-based comparisons of mechanical parts. Proceedings of Shape Modeling International, Genoa, 7–11 May 2001, pp 176–185Google Scholar
  42. 42.
    Cardone A, Gupta SK, Deshmukh A, Karnik M (2006) Machining feature-based similarity assessment algorithms for prismatic machined parts. Comput-Aided Des 38(9):954–972. doi: 10.1016/j.cad.2006.08.001 CrossRefGoogle Scholar
  43. 43.
    Tsai CY, Chang CA (2005) A two-stage fuzzy approach to feature-based design retrieval. Comput Ind 56(5):493–505. doi: 10.1016/j.compind.2005.02.001 CrossRefGoogle Scholar
  44. 44.
    Watson I, Marir F (1994) Case-based reasoning: a review. Knowl Eng Rev 9(4):327–354CrossRefGoogle Scholar
  45. 45.
    Zhang XQ, Wang J, Yamazaki K, Mori M (2004) A surface based approach to recognition of geometric features for quality freeform surface machining. Comput-Aided Des 36(8):735–744. doi: 10.1016/j.cad.2003.09.002 CrossRefGoogle Scholar
  46. 46.
    Sunil VB, Pande SS (2008) Automatic recognition of features from freeform surface CAD models. Comput-Aided Des 40(4):502–517. doi: 10.1016/j.cad.2008.01.006 CrossRefGoogle Scholar
  47. 47.
    Jagirdar R, Jain VK, Batra JL (2001) Characterization and identification of forming features for 3-D sheet metal components. Int J Mach Tool Manu 41(9):1295–1322. doi: 10.1016/S0890-6955(01)00006-2 CrossRefGoogle Scholar
  48. 48.
    Zheng JQ, Wang YL, Li ZG (2007) KBE-based stamping process paths generated for automobile panels. Int J Adv Manuf Tech 31(7–8):663–672. doi: 10.1007/s00170-005-0239-y Google Scholar
  49. 49.
    Bunke H, Foggia P, Guidobaldi C, Sansone C, Vento M (2002) A comparison of algorithms for maximum common subgraph on randomly connected graphs. Structural, syntactic, and statistical pattern recognition. Lect Notes Comput Sci 2396:123–132. doi: 10.1007/3-540-70659-3_12 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Taiwan UniversityTaipei CityRepublic of China

Personalised recommendations