Advertisement

Review of research work in sinking EDM and WEDM on metal matrix composite materials

  • R. K. Garg
  • K. K. Singh
  • Anish Sachdeva
  • Vishal S. Sharma
  • Kuldeep Ojha
  • Sharanjit SinghEmail author
ORIGINAL ARTICLE

Abstract

Metal matrix composites (MMCs) are newly advanced materials having the properties of light weight, high specific strength, good wear resistance and a low thermal expansion coefficient. These materials are extensively used in industry. Greater hardness and reinforcement makes it difficult to machine using traditional techniques, which has impeded the development of MMCs. The use of traditional machinery to machine hard composite materials causes serious tool wear due to the abrasive nature of reinforcement. These materials can be machined by many non-traditional methods like water jet and laser cutting but these processes are limited to linear cutting only. Electrical discharge machining (EDM) shows higher capability for cutting complex shapes with high precision for these materials. The paper presents a review of EDM process and year wise research work done in EDM on MMCs. The paper also discusses the future trend of research work in the same area.

Keywords

EDM Metal matrix composites Process parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300CrossRefGoogle Scholar
  2. 2.
    Kansal HK, Sehijpal S, Pradeep K (2007) Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol 184:32–41CrossRefGoogle Scholar
  3. 3.
    Abu Zeid OA (1997) On the effect of electro-discharge machining parameters on the fatigue life of AISI D6 tool steel. J Mater Process Technol 68(1):27–32CrossRefGoogle Scholar
  4. 4.
    Ramasawmy H, Blunt (2004) Effect of EDM process parameters on 3D surface topography. J Mater Process Technol 148:155–164CrossRefGoogle Scholar
  5. 5.
    Rudorff DW (1961) Spark machining and its development. Metal Treatment and Drop Forging: 28 (186): 120–124Google Scholar
  6. 6.
    Pandey PC, Shan HS (1999) Modern machining process. Tata McGraw-Hill Publishing Company Ltd, ISBN 0070965536, 84–113Google Scholar
  7. 7.
    Smith GV (1961) Spark machining—fundamental and techniques. J Br Inst Radio Eng 22:409Google Scholar
  8. 8.
    Luis CJ, Puertas I, Villa G (2005) Material removal rate and electrode wear study on the EDM of silicon carbide. J Mater Process Technol 164–165:889–896CrossRefGoogle Scholar
  9. 9.
    Bojorquez B, Marloth RT, Es-Said OS (2002) Formation of a crater in the work piece on an electrical discharge machine. Eng Fail Anal 9:93–97CrossRefGoogle Scholar
  10. 10.
    Marafona J, Chousal AG (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602CrossRefGoogle Scholar
  11. 11.
    Singh S, Maheshwari S, Pandey PC (2004) Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J Mater Process Technol 149:272–277CrossRefGoogle Scholar
  12. 12.
    Rajurkar KP (1994) Handbook of design, manufacturing and automation. Chapter 13: nontraditional manufacturing processes. Wiley, USA, ISBN 0471552186Google Scholar
  13. 13.
    Kansal HK, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169(3):427–436CrossRefGoogle Scholar
  14. 14.
    Fuller JE (1996) Electrical discharge machining. ASM Machining Handbook 16:557–564Google Scholar
  15. 15.
    Crookall JR, Heuvelman CJ (1971) Electro-discharge machining—the state of the art. Annals of the CIRP 20(1):113–120Google Scholar
  16. 16.
    De Bruyn HE (1968) Slope control—a great improvement in spark erosion. Annals of the CIRP 16:183–186Google Scholar
  17. 17.
    Pandit SM, Mueller TM (1987) Verification of on-line computer control of EDM by data dependent systems. J Eng Ind 109:109–121Google Scholar
  18. 18.
    Lin CL, Lin JL, Ko TC (2002) Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int j Adv Manuf Technol 19(4):271–277CrossRefGoogle Scholar
  19. 19.
    Lin JL, Wang KS, Yan BH, Tarng YS (2000) Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J Mater Process Technol 102:48–55CrossRefGoogle Scholar
  20. 20.
    Tzeng YF, Chen FC (2003) A simple approach for robust design of high-speed electrical discharge machining technology. Int J Mach Tools Manuf 43(3):217–227CrossRefGoogle Scholar
  21. 21.
    Marafona J, Wykes C (2000) A new method of optimizing material removal rate using EDM with copper tungsten electrodes. Int J Mach Tools Manuf 40(2):153–164CrossRefGoogle Scholar
  22. 22.
    Lonardo PM, Bruzzone AA (1999) Effect of flushing and electrode material on die-sinking EDM. CIRP Annals—Manufac Tech 48(1):123–126CrossRefGoogle Scholar
  23. 23.
    Wong YS, Lim LC, Lee LC (1995) Effect of flushing on electro-discharge machined surfaces. J Mater Process Technol 48:299–305CrossRefGoogle Scholar
  24. 24.
    Anonymous (1982) Dielectric fluids for electro discharge machining. British Petroleum Company, UKGoogle Scholar
  25. 25.
    Guu YH, Hocheng H (2001) Effects of work piece rotation on machinability during electrical discharge machining. J Mater Man Proc 16(1):91–101CrossRefGoogle Scholar
  26. 26.
    Soni JS, Chakraverty G (1994) Machining characteristics of titanium with rotary electro-discharge machining. Wear 171:51–58CrossRefGoogle Scholar
  27. 27.
    Yan BH, Wang C, Liu WD, Huang FY (2000) Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode. Int J Adv Manuf Technol 16(5):322–333CrossRefGoogle Scholar
  28. 28.
    Kagaya K, Oishi Y, Yada K (1986) Micro-electro discharge machining using water as a working fluid—I: micro-hole drilling. Precis Eng 8(3):157–162CrossRefGoogle Scholar
  29. 29.
    Sato T, Mizutani T, Yonemochi K, Kawata K (1986) The development of an electrodischarge machine for micro-hole boring. Precis Eng 8(3):163–168CrossRefGoogle Scholar
  30. 30.
    Soni JS, Chakraverti G (1996) Experimental investigation on migration of material during EDM of T 215 Cr12 die steel. J Mater Process Technol 56:439–451CrossRefGoogle Scholar
  31. 31.
    Roethel F, Garbajs V (1976) Contributions to the micro-analysis of spark-eroded surfaces. Annals of the CIRP 25(1):135–140Google Scholar
  32. 32.
    Erden (1983) Effect of materials on the mechanism of electric-discharge machining (EDM). J Eng Mater Technol 105:132–138CrossRefGoogle Scholar
  33. 33.
    Bayramoglu M, Duffill AW (1995) Manufacturing linear and circular contours using CNC EDM and frame type tools. Int J Mach Tools Manuf 35(8):1125–1136CrossRefGoogle Scholar
  34. 34.
    Saito K, Kishinami T, Konno H, Sato M, Takeyama H (1986) Development of numerical contouring control electrical discharge machining (NCC-EDM). CIRP Annals—Manufac Tech 35(1):117–120CrossRefGoogle Scholar
  35. 35.
    Kaneko T, Tsuchiya M (1984) Three dimensionally controlled EDM using cylindrical electrode. J Japan Soc Electr Mach Eng 18(35):1–4Google Scholar
  36. 36.
    Mohri N, Suzuki M, Furuya M, Saito N (1995) Electrode wear process in electrical discharge machining. Annals of CIRP 44(1):165–168CrossRefGoogle Scholar
  37. 37.
    Staelens F, Kruth JP (1989) A computer integrated machining strategy for planetary EDM. Annals of CIRP 38(1):187–190CrossRefGoogle Scholar
  38. 38.
    Schumacher BM (1983) EDM technology for precision work pieces with excellent surface quality. Proceedings of the ISEM–7, 124–135Google Scholar
  39. 39.
    Lok YK, Lee TC (1995) Wire-cut electrical discharge machining of SIALON ceramics. Proceedings of the Seventh International Manufacturing Conference with China. Harbin, China, pp 71–76Google Scholar
  40. 40.
    Yan Mu-Tian, Lai Yi-Peng (2007) Surface quality improvement of wire-EDM using a fine-finish power supply. Int J Mach Tools Manuf 47:1686–1694CrossRefGoogle Scholar
  41. 41.
    Katz Z, Tibbles CJ (2005) Analysis of micro-scale EDM process. Int J Adv Manuf Technol 25:923–928CrossRefGoogle Scholar
  42. 42.
    Dhanik S, Joshi SS, Ramakrishnan N, Apte PR (2005) Evolution of EDM process modelling and development towards modelling of the micro-EDM process. Int J Manuf Technol Manag 7:157–180CrossRefGoogle Scholar
  43. 43.
    Zhao WS, Meng QG, Wang ZL (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129:30–33CrossRefGoogle Scholar
  44. 44.
    Furutani K, Saneto A, Takezawa H, Mohri N, Miyake H (2001) Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precis Eng 25:138–144CrossRefGoogle Scholar
  45. 45.
    Clyne TW, Withers PJ (1993) An introduction to metal-matrix composites. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. 46.
    Taya M, Arsenault RJ (1989) Metal-matrix composites. Thermo mechanical behavior. Pergamon PressGoogle Scholar
  47. 47.
    Jahanmir S, Ramulu M, Koshoi P (1999) (eds) machining of ceramics and composites. Marcal Dekker Inc., New YorkGoogle Scholar
  48. 48.
    Hamatami G, Ramulu M (1990) Machinability of high temperature composites by abrasive water jet. ASME J Eng Mater Technol 112(4):381–386CrossRefGoogle Scholar
  49. 49.
    Hung NP, Yang IJ, Leong KW (1994) Electrical discharge machining of cast metal matrix composites. J Mater Process Technol 41:229–236CrossRefGoogle Scholar
  50. 50.
    Muller F, Monaghan J (2001) Non-conventional machining of particle reinforced metal matrix composites. J Mater Process Technol 118:278–285CrossRefGoogle Scholar
  51. 51.
    Guitrau EP (1997) The EDM handbook. Hanser Gardner Publication, Cincinnati, OhioGoogle Scholar
  52. 52.
    Rajukar KP, Pandit SM (2004) Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). J Mater Proc Technol 149(1–3):266–271Google Scholar
  53. 53.
    Rajukar KP, Wang WM (1997) Improvement of EDM performance with advanced monitoring and control systems. J Manuf Sci Eng 119:770–774CrossRefGoogle Scholar
  54. 54.
    Ramulu M (1988) EDM sinker cutting of ceramic particulate composite SiC-TiB2. Adv Ceram Mater 3(4):324–327Google Scholar
  55. 55.
    Ramulu M, Garbini J (1991) EDM surface characterization of a ceramic composite TiB2/SiC. ASME J Eng Mater Technol 113(4):437–442CrossRefGoogle Scholar
  56. 56.
    Ramulu M, Sec HW, Wang DH (1990) Machining of ceramic composites TiB2/SiC by spark erosion. Manuf Rev 3(2):123–129Google Scholar
  57. 57.
    Ramulu M, Taya M (1989) EDM machining of SiCw/Al composite. J Mater Sci 24:1103–1108CrossRefGoogle Scholar
  58. 58.
    DeSilva A, Rankine DJ (1995) Electrical discharge machining of metal matrix composites. Proc. int. Symp. for Electro Machining XI, Switzerland 75–84Google Scholar
  59. 59.
    Fan WW (1993) EDM Characteristic of the SiC particles reinforce aluminum matrix composite Masters Thesis, National Central University, TaiwanGoogle Scholar
  60. 60.
    Hocheng H, Lei WI, Hsu HS (1997) Preliminary study of material removal in electric discharge machining of SiC/Al. J Mater Process Technol 63:813–818CrossRefGoogle Scholar
  61. 61.
    Karthikeyan R, Lakshmi Narayanan PR, Naagarazan RS (1999) Mathematical modeling for electric discharge machining of aluminium–silicon carbide particulate composites. J Mater Process Technol 87:59–63CrossRefGoogle Scholar
  62. 62.
    Muller F, Monaghan J (2000) Non-conventional machining of particle reinforced metal matrix composite. Int J Mach Tools Manuf 40:1351–1366CrossRefGoogle Scholar
  63. 63.
    Ramulu M, Paul G, Patel J (2001) EDM surface effects on fatigue strength of 15 vol.% SiCp/Al metal matrix composite material. Compos Struct 54:79–86CrossRefGoogle Scholar
  64. 64.
    Mohan B, Rajadurai A, Satyanaray KG (2002) Effect of SiC and rotation of electrode on electric discharge machining of Al-SiC composite. J Mater Process Technol 124:297–304CrossRefGoogle Scholar
  65. 65.
    Wang CC, Yan BH (2000) Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining. J Mater Process Technol 102:90–102CrossRefGoogle Scholar
  66. 66.
    Narender Singh P, Raghukandan K, Pai BC (2004) Optimization by Grey relational of EDM parameters on machining Al–10%SiCp composites. J Mater Process Technol 155–156:1658–1661CrossRefGoogle Scholar
  67. 67.
    Narender Singh P, Raghukandan K, Rathinasabapathi M, Pai BC (2004) Electric discharge machining of Al–10%SiCp as-cast metal matrix composites. J Mater Process Technol 155–156:1653–1657CrossRefGoogle Scholar
  68. 68.
    Mohan B, Rajadurai A, Satyanarayana KG (2004) Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode. J Mater Process Technol 153–154:978–985CrossRefGoogle Scholar
  69. 69.
    Seo YW, Kim D, Ramulu M (2006) Electrical discharge machining of functionally graded 15-35 vol.% SiCp/Al composites. Material and Manufacturing Processes 21:479–487CrossRefGoogle Scholar
  70. 70.
    Sushant D, Rajesh P, Nishant S, Akhil S, Hemath KG (2007) Mathematical modeling of electric discharge machining of cast Al–4Cu–6Si alloy–10 wt.% SiCp composites. J Mater Process Technol 194:24–29CrossRefGoogle Scholar
  71. 71.
    Akshay D, Pradeep K, Inderdeep S (2008) Experimental investigation and optimization in EDM of Al 6063 SiCp metal matrix composite. Int J Machin Machinab Mater 5(3/4):293–308Google Scholar
  72. 72.
    Yan BH, Wang CC (1999) The machining characteristics of Al2O3/6061Al composite using rotary electro-discharge machining with a tube electrode. J Mater Process Technol 95:222–231CrossRefGoogle Scholar
  73. 73.
    Kansal HK, Sehijpal S, Pradeep K (2006) An experimental study of the machining parameters in powder mixed electric discharge machining of Al–10%SiCP metal matrix composites. Int J Machin Machinab Mater 1(4):396–411CrossRefGoogle Scholar
  74. 74.
    Shankar S, Sachi M, Chandra PP (2008) Effect of SiC powder- suspended dielectric fluid on the surface finish of 6061Al/Al2O3P/20p composites during electric discharge machining. Int J Machin Machinab Mater 4(2/3):252–274CrossRefGoogle Scholar
  75. 75.
    Riaz Ahamed A, Asokan P, Aravindan S (2009) EDM of hybrid Al–SiCp–B4Cp and Al– SiCp–Glassp MMCs. Int J Adv Manuf Technol 44:520–528CrossRefGoogle Scholar
  76. 76.
    Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44:1247–1259CrossRefGoogle Scholar
  77. 77.
    Poon, Lee TC (1993) Electrical discharge machining of particulate metal matrix composites. Proceedings of the ASME 1993 Materials Congress, Pittsburgh, PA, pp 43–50Google Scholar
  78. 78.
    Roux Le, Wise MLH, Aspinwall DK (1993) Electric discharge machining of an aluminum alloy silicon carbide reinforced metal matrix composite. Proceedings of the 30th MATADOR Conference, Manchester, pp 247–254Google Scholar
  79. 79.
    Gatto A, Iuliano L (1997) Cutting mechanism and surface features of WED machined metal matrix composite. J Mater Process Technol 65:209–214CrossRefGoogle Scholar
  80. 80.
    Rozenek M, Kozak J, Dalbrowski L, Eubkowski K (2001) Electrical discharge machining characteristics of metal matrix composites. J Mater Process Technol 109:367–370CrossRefGoogle Scholar
  81. 81.
    Guo ZN, Wang X, Huang ZG, Yue TM (2002) Experimental investigation into shaping particles-reinforce material by WEDM-HS. J Mater Process Technol 129:56–59CrossRefGoogle Scholar
  82. 82.
    Yan BH, Tsai HC, Huang FY, Lee LC (2005) Examination of wire electrical discharge machining of Al2O3p/6061Al composites. Int J Mach Tools Manuf 45:251–259CrossRefGoogle Scholar
  83. 83.
    Patil NG, Brahmankar PK (2006) Some investigations into wire electro-discharge machining performance of Al/SiCp composites. Int J Machin Machin Mater 1(4):412–431CrossRefGoogle Scholar
  84. 84.
    Manna A, Bhattacharyya B (2006) Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PR AlSiC MMC. Int J Adv Manu Tech 28:67–75CrossRefGoogle Scholar
  85. 85.
    Probir S, Debashis T, Pal Surjya K, Partha S, Srivastava Ashok K, Karabi D (2009) Modeling of wire electro-discharge machining of TiC/Fe in situ metal matrix composite using normalized RBFN with enhanced k-means clustering technique. Int J Adv Manuf Technol 43:107–116CrossRefGoogle Scholar
  86. 86.
    Liu JW, Yue TM, Guo ZN (2009) Wire electrochemical discharge machining of Al2O3 particle reinforced aluminum alloy 6061. Mater Manuf Process 24:446–453CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • R. K. Garg
    • 1
  • K. K. Singh
    • 2
  • Anish Sachdeva
    • 1
  • Vishal S. Sharma
    • 1
  • Kuldeep Ojha
    • 1
  • Sharanjit Singh
    • 1
    Email author
  1. 1.Department of Industrial and Production EngineeringDr B. R. Ambedkar National Institute of TechnologyPunjabIndia
  2. 2.Department of Mechanical Engineering & Mining Machinery EngineeringIndian School of Mines (ISM)JharkhandIndia

Personalised recommendations