Advertisement

Design and analysis of flexure-hinge parameter in microgripper

  • M. R. Aravind Raghavendra
  • A. Senthil Kumar
  • Bhat Nikhil Jagdish
ORIGINAL ARTICLE

Abstract

In the precision engineering field, a large number of applications require precise and microlevel manipulations, and microgrippers are an essential device to achieve precise manipulations. Highly precise movements are, in general, hard to achieve using conventional joints due to manufacturing error and backlash. In this paper, a new two-dimensional, compliant, monolithic piezo-actuated microgripper using flexure hinges is reported. The microgripper is designed, and a comparison study on stress and displacement is done by varying the hinge parameters such as the hinge radius, web thickness, position of flexure hinge, and radius of curvature of hinges. Kinematics of the microgripper is analyzed based on input/output displacement for all the above hinge design variations using FEM, and a kinematic model is arrived at based on the hinge location.

Keywords

Microgripper Flexure hinges FEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monkman GJ, Hesse S, Steinmann R, Schunk H (2007) Robot Grippers. Wiley, WeinheimGoogle Scholar
  2. 2.
    Rabenorosoa K, Haddab Y, Lutz P (2008) In: Ratchev S, Koelemeijer S (Eds.) IFIP International Federation for Information Processing, 260, Micro-Assembly Technologies and Applications. Springer, Boston, pp 235–242Google Scholar
  3. 3.
    Lobontiu N (2003) Compliant mechanisms design of flexure hinges. CRC, Boca RatonGoogle Scholar
  4. 4.
    Park SR, Yang SH (2005) A mathematical approach for analyzing ultra precision positioning system with compliant mechanism. J Mater Process Technol 164–165:1584–1589CrossRefGoogle Scholar
  5. 5.
    Lee SH, Lee KC, Lee SS, Oh HS (2003) Fabrication of an electrothermally actuated electrostatic microgripper. In: The 12th International Conference on Solid-State Sensors, Actuators and Microsystems, vol. 1, Boston, June, pp 552–555Google Scholar
  6. 6.
    Chan HY, Li WJ (2003) A thermally actuated polymer micro robotic gripper for manipulation of biological cells. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, Taipei, September, 2003, pp 288–293Google Scholar
  7. 7.
    Pan CS, Hsu WY (1996) An electro-thermally and laterally driven polysilicon microactuator. J Micromech Microeng 7:7–13CrossRefGoogle Scholar
  8. 8.
    Chu PB, Pister KSJ (1994) Analysis of closed-loop control of parallel-plate electrostatic microgrippers. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, San Diego, USA, May, pp 820–825Google Scholar
  9. 9.
    Volland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectr Eng 61–62:1015–1023CrossRefGoogle Scholar
  10. 10.
    Kim CJ, Pisano AP, Muller RS (1991) Overhung electrostatic microgripper, Digest of Technical Papers, TRANSDUCERS’91. In: International Conference on Solid-State Sensors and Actuators, San Francisco, USA, June, pp. 610–613Google Scholar
  11. 11.
    Kim CJ, Pisano AP, Muller RS (1992) Silicon-processed overhanging microgripper. J Microelectromech Syst 1(1):31–36CrossRefGoogle Scholar
  12. 12.
    Kim CJ, Pisano AP, Muller RS, Lim MG (1990) Polysilicon microgripper. In: 4th Technical Digest of Solid-State Sensor and ActuatorWorkshop, IEEE, Hilton Head Island, USA, June, pp 48–51Google Scholar
  13. 13.
    Boggild P, Hansen TM, Molhave K, Hyldgrad A, Jensen MO, Richter J, Montelius L, Grey F (2001) Customizable nanotweezers for manipulation of freestanding nanostructures. In: Proceedings of the 2001 IEEE Conference on Nanotechnology, Maui, USA, October, pp. 87–92Google Scholar
  14. 14.
    Haddab Y, Challet N, Bourjault A (2000) A microgripper using smart piezoelectric actuators. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, Takamatsu, Japan, November, pp. 659–664Google Scholar
  15. 15.
    Carrozza MC, Menciassi A, Tiezzi G, Dario P (1997) The development of a LIGA-microfabricated gripper for micromanipulation tasks. J Micromech Microeng 8:141–143CrossRefGoogle Scholar
  16. 16.
    Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A 133:218–224CrossRefGoogle Scholar
  17. 17.
    Goldfarb M, Celanovic N (1998) A flexure-based gripper for small-scale manipulation. Robotica 17:181–187CrossRefGoogle Scholar
  18. 18.
    Mohd Zubir MN, Shirinzadeh B (2009) Development of a high precision flexure-based microgripper. Precis Eng 33:362–370CrossRefGoogle Scholar
  19. 19.
    Ren H, Gerhard E (1997) Design and fabrication of a current-pulse-excited bistable magnetic microactuator. Sens Actuators A Phys 58(3):259–264CrossRefGoogle Scholar
  20. 20.
    Zhong ZW, Yeong CK (2006) Development of a gripper using SMA wire. Sens Actuators A Phys 126(2):375–381CrossRefGoogle Scholar
  21. 21.
    Lee AP, Ciarlo DR, Krulevitch PA, Lehew S, Trevino J, Northrup MA (1995) A practical microgripper by fine alignment, eutectic bonding and SMA actuation. In: The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, pp 368–371Google Scholar
  22. 22.
    Kohl M, Just E, Pfleging W, Miyazaki S (2000) SMA microgripper with integrated antagonism. Sens Actuators A Phys 83(1–3):208–213CrossRefGoogle Scholar
  23. 23.
    Her I, Chang JC (1994) A linear scheme for the displacement analysis of micropositioning stages with flexure hinges. ASME J Mech Des 116:770–776CrossRefGoogle Scholar
  24. 24.
    Paros LM, Weisbord L (1965) How to design flexure hinges. Mach Des 37:151–156Google Scholar
  25. 25.
    Smith S, Chetwynd D, Bowen D (1987) Design and assessment of monolithic high precision translation mechanisms. J Phys E 20:977–983CrossRefGoogle Scholar
  26. 26.
    Lobontiu N, Paine J, Garcia E, Goldfarb M (2002) Design of symmetric conic section flexure hinges based on closed-form compliance equations. Mech Mach Theory 37:477–498zbMATHCrossRefGoogle Scholar
  27. 27.
    Yong YK, Tien-Fu Lu, Handley DC (2008) Review of circular flexure hinge design equations and derivation of empirical formulations. Prec Eng 32(2008):63–70CrossRefGoogle Scholar
  28. 28.
    Chena G, Howell LL (2008) Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms. Prec Engg 33(3):268–274CrossRefGoogle Scholar
  29. 29.
    Smith ST (2000) Flexures: elements of elastic mechanisms. Gordon and Breach, New YorkGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • M. R. Aravind Raghavendra
    • 1
  • A. Senthil Kumar
    • 1
  • Bhat Nikhil Jagdish
    • 1
  1. 1.Department of Mechanical EngineeringNational University of SingaporeKent Ridge ParkSingapore

Personalised recommendations