Multifunctional materials: engineering applications and processing challenges

  • Konstantinos Salonitis
  • John Pandremenos
  • John Paralikas
  • George Chryssolouris
ORIGINAL ARTICLE

Abstract

Multifunctional materials are designed so as to meet specific requirements through tailored properties. Smart materials can be considered as multifunctional ones that have the ability to react upon an external stimulus, simulating, in this way, the behavior of nature’s materials. Furthermore, the introduction of biomemetics in the material science, allows the designing of materials with similar processes as nature does: building from molecules to complete structures. This paper focuses on the presentation of the various multifunctional materials reported in the literature and the processing means developed.

Keywords

Multifunctional materials Smart materials Composites Material processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christodoulou L, Venables JD (2003) Multifunctional material systems: the first generation. JOM 55(12):39–45CrossRefGoogle Scholar
  2. 2.
    Noor AK, Venneri SL, Paul DB, Hopkins MA (2000) Structures technology for future aerospace systems. Comput Struct 74:507–519CrossRefGoogle Scholar
  3. 3.
    Spaldin NA, Pickett WE (2003) Computational design of multifunctional materials. J Solid State Chem 176:615–632CrossRefGoogle Scholar
  4. 4.
    Chryssolouris G, Papakostas N, Mavrikios D (2008) A perspective on manufacturing strategy: produce more with less. CIRP J Manu Sci Tech 1:45–52CrossRefGoogle Scholar
  5. 5.
    Amini E, Atack PA (1974) A survey of composite materials. Sheet Met Ind, January, pp 7–15Google Scholar
  6. 6.
    King RL (1982) A production engineers view of advanced composite materials. Mater Des 3(4):515–522Google Scholar
  7. 7.
    McMullen P (1984) Fiber/resin composites for aircraft primary structures: a short history 1936–1984. Composites 15:222–230CrossRefGoogle Scholar
  8. 8.
    Lee, Stuart M. (Ed.), International encyclopedia of composites, “Historical perspectives of composites,” by John Delmonte, New York: VCH Publishers, 1990 Google Scholar
  9. 9.
    Lubin, George (ed), (1982) Handbook of composites. Van Nostrand Reinhold Company Inc., New YorkGoogle Scholar
  10. 10.
    Strong B (1989) Fundamentals of composites manufacturing. Society of Manufacturing Engineers, DearbornGoogle Scholar
  11. 11.
    Giordano M, Iannace S, Nicolais L (2006) Polymeric composite materials. In: Max-planck-institut für metallforschung Stuttgart, European white book on fundamental research in material scienceGoogle Scholar
  12. 12.
    Chung DL (2002) Composites get smart. Materials Today 5(1):30–35CrossRefGoogle Scholar
  13. 13.
    Parthenios J, Katerelos DG, Psarras GC, Galiotis C (2002) Aramid fibers; a multifunctional sensor for monitoring stress/strain fields and damage development in composite materials. Eng Fract Mech 69:1067–1087CrossRefGoogle Scholar
  14. 14.
    Chehura E, Skordos AA, Ye C-C, James SW, Partridge IK, Tatam RP (2005) Strain development in curing epoxy resin and glass fibre/epoxy composites monitored by fibre Bragg grating sensors in birefringent optical fibre. Smart Mater Struct 14:354–362CrossRefGoogle Scholar
  15. 15.
    Kuang KSC, Cantwell WJ (2002) In situ process monitoring of a thermoplastic-based fibre composite using optical fibre sensors. Smart Mater Struct 11:840–847CrossRefGoogle Scholar
  16. 16.
    Whelan MP, Albrecht D, Capsoni A (2002) Remote structural monitoring of the Cathedral of Como using an optical fibre Bragg grating sensor system. Proc SPIE 4694:242–252CrossRefGoogle Scholar
  17. 17.
    Lowke K, Meyer D, Starr A, Nemat-Nasser S (2005) Signal identification in smart composite materials using the two-dimensional fast Fourier transform. Smart Mater Struct 14(5):895–903CrossRefGoogle Scholar
  18. 18.
    Wang S, Chung DDL (2005) Self-sensing of damage in carbon fiber polymer-matrix composite by measurement of the electrical resistance or potential away from the damaged region. J Mater Sci 40:6463–6472CrossRefGoogle Scholar
  19. 19.
    Surgeon M, Wevers M (1998) Using optical fibre technology to develop a damage detection sensor for composite materials: preliminary research. NDTnet 3(8)Google Scholar
  20. 20.
    Steward A, Carman G, Richards L (2005) Health monitoring technique for composite materials utilizing embedded thermal fiber optic sensors. J Compos Mater 39(3):199–213CrossRefGoogle Scholar
  21. 21.
    Tietelbaum M, O'Brien DJ, Wells ND, Yarlagadda S, Wetzel ED, Goossen KW (2005) Multifunctional composites with integrated optical busses for data and sensing applications. Advanced Materials and Manufacturing Technology, 25th Army Science Conference, 91–95Google Scholar
  22. 22.
    Peng LM, Li H, Wang JH (2005) Processing and mechanical behavior of laminated titanium–titanium tri-aluminide (Ti–Al3Ti) composites. Materials Science and Engineering A 406:309–318CrossRefGoogle Scholar
  23. 23.
    Peng LM, Wang JH, Li H, Zhao JH, He LH (2005) Synthesis and microstructural characterization of Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Scripta Mater 52:243–248CrossRefGoogle Scholar
  24. 24.
    Tiezheng L, Grignon F, Benson DJ, Vecchio KS, Olevsky EA, Fengchun J, Rohatgi A, Schwarz RB, Meyers MA (2004) Modeling the elastic properties and damage evolution in Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Mater Sci Eng 374:10–26CrossRefGoogle Scholar
  25. 25.
    Zalba B, Marin JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: material, heat transfer analysis and applications. Appl Thermal Eng 23:251–283CrossRefGoogle Scholar
  26. 26.
    Wirtz R, Zhao T, Jiang Y (2004) Thermal and mechanical characteristics of a multi-functional thermal energy storage structure. International Society Conference on Thermal Phenomena, 549–556Google Scholar
  27. 27.
    Shaikh S, Lafdi K (2006) Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage. Energy Convers Manage 47:2103–2117CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Fang X (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manage 47:303–310CrossRefGoogle Scholar
  29. 29.
    Bauer CA, Wirtz RA (2000) Thermal characteristics of a compact, passive thermal energy storage device. In: Proceedings of the 2000 ASME IMECE, Orlando, Florida, USAGoogle Scholar
  30. 30.
    Wirtz R, Fuchs A, Narla A, Shen Y, Zhao T, Jiang Y (2003) A multi-functional graphite/epoxy-based thermal energy storage composite for temperature control of sensors and electronics. AIAA Paper, 2003-5-13Google Scholar
  31. 31.
    Yin T, Rong MZ, Zhang MQ, Yang GC (2007) Self-healing epoxy composites—preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos Sci Technol 67:201–212CrossRefGoogle Scholar
  32. 32.
    Plaisted TA, Amirkhizi AV, Arbelaez D, Nemat-Nasser SC, Nemat-Nasser S (2003) Self-healing structural composites with electromagnetic functionality. Proc. SPIE 5054:372. doi:10.1117/12.483894 CrossRefGoogle Scholar
  33. 33.
    Kessler MR, Sottos NR, White SR (2003) Self-healing structural composite materials. Compos Part A 34:743–753CrossRefGoogle Scholar
  34. 34.
    Chen X, Dam M, Ono K, Mal A, Shen H, Nutt S, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698–1702. doi:10.1126/science.1065879 CrossRefGoogle Scholar
  35. 35.
    Duenas T, Bolanos E, Murphy E, Mal A, Wudl F, Schaffner C, Wang Y, Hahn HT, Ooi TK, Jha A, Bortolin R (2005) Multifunctional self-healing and morphing composites. Advanced Materials & Manufacturing Technology, 25th Army Science ConferenceGoogle Scholar
  36. 36.
    Yang S, Lozano K, Lomeli A, Foltz HD, Jones R (2005) Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Compos Part A 36:691–697CrossRefGoogle Scholar
  37. 37.
    Bagwell RM, McManaman JM, Wetherhold RC (2006) Short shaped copper fibers in an epoxy matrix: their role in a multifunctional composite. Compos Sci Technol 66:522–530CrossRefGoogle Scholar
  38. 38.
    Radford DW, Cheng BC (1993) Ultra-light composite materials for EMI shielding. SAMPE Quarterly 60Google Scholar
  39. 39.
    Fu X, Chung DDL (1996) Submicron carbon filament cement-matrix composites for electromagnetic interference shielding. Cem Concr Res 26(10):1467–1472CrossRefGoogle Scholar
  40. 40.
    Liu GR, Han X, Lam KY (2000) Material characterization of FGM plates using elastic waves and an inverse procedure. J Compos Mater 35(11):954–971Google Scholar
  41. 41.
    Aboudi J, Pindera MJ, Arnold SM (2000) Higher-order theory for functionally graded materials. NASA Glenn's Research & Technology, URL: http://www.grc.nasa.gov/WWW/RT2000/5000/5920arnold3.html
  42. 42.
    Momoda LA (2004) The future of engineering materials: multifunction for performance-tailored structures, the bridge. National Academy Engineering 34(4):18–21Google Scholar
  43. 43.
    Chryssolouris G (2006) Manufacturing systems: theory and practice, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  44. 44.
    Clare AT, Chalker PR, Davies S, Sutcliffe CJ, Tsopanos S (2008) Selective laser sintering of bariu, tatanate-polymer composite films. J Mater Sci 43(9):3197–3202CrossRefGoogle Scholar
  45. 45.
    Kruth J-P, Levy G, Klocke F, Childs THC (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. Annals of CIRP 56(2):730–759CrossRefGoogle Scholar
  46. 46.
    Clyne TW, Withers PJ (1995) An introduction to metal matrix composites. Camb Solid State Sci SerGoogle Scholar
  47. 47.
    Kaczmara JW, Pietrzakb K, Wosinaskic W (2000) The production and application of metal matrix composite materials. J Mater Process Technol 106:58–67CrossRefGoogle Scholar
  48. 48.
    Corbin SF, Wilkonson DS (1996) The tensile properties of a particulate reinforced Al alloy in the temperature range 196 ± 3008C. Can Metall Q 35:189–198CrossRefGoogle Scholar
  49. 49.
    Saji S, Neishi Y, Araki H, Minamino Y, Yamane T (1995) Amorphization promoted by mechanical alloying of aluminium-rich Al±Ti±Fe mixed powders. Metall Mater Trans A 26:1305–1307CrossRefGoogle Scholar
  50. 50.
    Benjamin JS, Volin TE (1974) The mechanism of mechanical alloying. Metall Trans 5:1929–1974CrossRefGoogle Scholar
  51. 51.
    Singer ARE (1991) Metal matrix composites made by spray forming. Materials Science and Engineering, A 135:13–17CrossRefGoogle Scholar
  52. 52.
    Janczak-Rusch J, Piazza D, Boccaccini AR (2005) Joining of SiC fibre reinforced borosilicate glass matrix composites to molybdenum by metal an silicate brasing. J Mater Sci 40:3693–3701CrossRefGoogle Scholar
  53. 53.
    Kolesnikov B, Herbeck L, Fink A (2008) CFRP/titanium hybrid material for improving composite bolted joints. Compos Struct 38:368–380CrossRefGoogle Scholar
  54. 54.
    Lim TS, Kim BC, Lee DC (2006) Fatigue characteristics of bolted joints for unidirectional composite laminates. Compos Struct 72:58–68CrossRefGoogle Scholar
  55. 55.
    Camanho PP, Lambert M (2006) A design methodology for mechanically fastened joints in laminated composite materials. Compos Sci Technol 66:3004–3020CrossRefGoogle Scholar
  56. 56.
    Gunnion AJ, Herxzberg I (2006) Parametric study of scarf joints in composite structures. Compos Struct 75:364–376CrossRefGoogle Scholar
  57. 57.
    Cao Z, Caedew-Hall M (2006) Interference-fit riveting technique in fiber composite laminates. Aerosp Sci Technol 10:327–330CrossRefGoogle Scholar
  58. 58.
    Bassani P, Capello E, Colombo D, Previtali P, Vedani M (2007) Effect of process parameters on bead properties of A359/SiC MMCs welded by laser. Compos Part A 38:1089–1098CrossRefGoogle Scholar
  59. 59.
    Hascalik A, Orhan N (2007) Effect of particle size on the friction welding of Al2O3 reinforced 6160 Al alloy composite and SAE 1020 steel. Mater Des 28:313–317Google Scholar
  60. 60.
    Amirizad M, Kokabi AH, Gharacheh MA, Sarrafi R, Shalchi B, Azizieh M (2006) Evaluation of microstructure and mechanical properties in friction stir welded A356+15%SiCp cast composite. Mater Lett 60:565–568CrossRefGoogle Scholar
  61. 61.
    Uzun H (2007) Friction stir welding of SiC particulate reinforced AA2124 aluminum alloy matrix composite. Mater Des 28:1440–1446Google Scholar
  62. 62.
    Lee JJ-W, Lloys IK, Chai H, Jung Y-G, Lawn BR (2007) Arrest, deflection, penetration and reinitiation of crack in brittle layers across adhesive interlayers. Acta Mater 55:5859–5866CrossRefGoogle Scholar
  63. 63.
    Radice J, Vinson J (2006) On the use of quasi-dynamic modeling for composite material structures: analysis of adhesively bonded joints with midplane asymmetry and transverse shear deformation. Compos Sci Technol 66:2528–2547CrossRefGoogle Scholar
  64. 64.
    Kumar P, Tiwari S, Singh RK (2005) Characterization of toughened bonded interface against fracture and impact loads. Int J Adhes Adhes 25:527–533CrossRefGoogle Scholar
  65. 65.
    Kweon J-H, Jung J-W, Kim T-H, Choi J-H, Kim D-H (2006) Failure of carbon composite-to-aluminium joints with combined mechanical fastening and adhesive bonding. Compos Struct 75:192–198CrossRefGoogle Scholar
  66. 66.
    Friend C (1996) Smart materials: the emerging technology. Mater World 4:16–18Google Scholar
  67. 67.
    Monner HP (2005) Smart materials for active noise and vibration reduction. Keynote Paper in Novem–Noise and Vibration: Emerging Methods, Saint-Raphael, FranceGoogle Scholar
  68. 68.
    Brockmann T, Lammering R, Yang F (2006) Modelling and computational analysis of structures with integrated piezoelectric material. Mech Adv Mater Struc 13:371–378CrossRefGoogle Scholar
  69. 69.
    (2001) Educational Software for Micromachines and Related Technologies (eSMART), Smart materials. University of Alberta. http://www.cs.ualberta.ca/∼database/MEMS/sma_mems/smrt.html. Accessed 8 May 2009
  70. 70.
    Polla D, Francis L (1998) Processing characterization of piezoelectrics materials and integration into microelectromechanical systems. Annu Rev Mater Sci 28:563–597CrossRefGoogle Scholar
  71. 71.
    Stoeckel D (1995) The Shape Memory Effect – Phenomenon, Alloys and Applications. Proceedings of the Shape Memory Alloys and Power Systems, EPRI 1995:1–13 Google Scholar
  72. 72.
    Elzey DM, Sofla AYN, Wadley HNG (2005) A shape memory-based multifunctional structural actuator panel. Int J Solids Struct 42:1943–1955MATHCrossRefGoogle Scholar
  73. 73.
    Nitinol Devices & Components (NDC), URL: www.nitinol.com. Accessed 8 May 2009
  74. 74.
    Pelton A, DiCello J, Miyazaki S (2000) Optimization of processing and properties of medical grade Nitinol wire. Proceedings of the International Conference on Shape Memory and Super Elastic Technologies SMST 2000:361–374 Google Scholar
  75. 75.
    Stoeckel D (2001) Forming of nitinol—a challenge. In: Siegert K (ed) New Developments in Forging Technology–International conference, Fellbach–Germany, June 2003, 119–134Google Scholar
  76. 76.
    Gong X-Y, Pelton A, Duerig TW, Rebelo N, Perry K (2003) Finite element analysis and experimental evaluation of superelastic nitinol stent. Proceedings of the First International Conference on Shape Memory and Super Elastic Technologies, Pacific Grove, USA, pp 453–462Google Scholar
  77. 77.
    Pelton AR, Rebelo N, Duerig TW, Wick A (1995) Experimental and FEM analysis of the bending behaviour of superelastic tubing. Proceedings of the First International Conference on Shape Memory and Super Elastic Technologies, Pacific Grove, USA, pp 353–358Google Scholar
  78. 78.
    Raychem Corporation. URL: http://www.raychem.com. Accessed 11 May 2009
  79. 79.
    Predki W, Adam Knopik A, Bauer B (2008) Engineering applications of NiTi shape memory alloys. Materials Science and Engineering A 481–482:598–601CrossRefGoogle Scholar
  80. 80.
    Duerig T, Pelton A, Stockel D (1999) An overview of nitinol medical applications. Materials Science and Engineering A 273–275:149–160CrossRefGoogle Scholar
  81. 81.
    Song G, Ma N, Li H-N (2006) Applications of shape memory alloys in civil structures. Engineering Structures 28:1266–1274CrossRefGoogle Scholar
  82. 82.
    Dolce M, Cardone D (2001) Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. Int J Mech Sci 43:2631–2656CrossRefGoogle Scholar
  83. 83.
    Dolce M, Cardone D (2001) Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension. Int J Mech Sci 43:2657–2677CrossRefGoogle Scholar
  84. 84.
    Ming H, Wu MH, Schetky L McD (2000) Industrial applications for shape memory alloys. Proceedings of the International Conference on Shape Memory and Superelastic Technolgies SMTS2000, pp 171–182Google Scholar
  85. 85.
    Stoeckel D, Borden T (1992) Actuation and fastening with shape memory alloys in the automotive industry. Metall 46(7):668–672Google Scholar
  86. 86.
    Anson T (1999) Shaping the body from memory. Mater World 7(12):745–747Google Scholar
  87. 87.
    Duerig T, Stoeckel D, Johnson D (2002) SMA–smart materials for medical applications. Proc SPIE 4763:7–15CrossRefGoogle Scholar
  88. 88.
    Lampert CM (1999) The state-of-the-art of switchable glazing and related electronic products. In 42nd Technical Conference Proceedings, Society of Vacuum Coaters, 197Google Scholar
  89. 89.
    Lampert CM (2004) Chromogenic smart materials. Materials Today 28–35Google Scholar
  90. 90.
    (1998) Emerging smart materials systems: opportunities for ceramics. In: OE Reports 170, SPIE Web. http://www.spie.org/web/oer/february/feb98/smartmat.html. Accessed 11 May 2009
  91. 91.
    Smart window one: the renovation. In: Smart Windows Doors Inc. http://www.smartwindows.com/SmartProducts.htm. Accessed 11 May 2009
  92. 92.
    Siegel RW, Hu E, Roco MC (1999) Nanostructure science and technology: a worldwide study. Kluwer Academic Publishers, New YorkGoogle Scholar
  93. 93.
    Chryssolouris G, Stavropoulos P, Tsoukantas G, Salonitis K, Stournaras A (2004) Nanomanufacturing processes: a critical review. Int J Mater Prod Technol 21(4):331–348CrossRefGoogle Scholar
  94. 94.
    Taniguchi N (1974) On the basic concept of nanotechnology. Proceeding of the International Conference on Production Eng.–ICPE, Tokyo, pp 18–23Google Scholar
  95. 95.
    Guz AN, Rushchitskii YY (2003) Nanomaterials: on the mechanics of nanomaterials. Int Appl Mech 39(11):1271–1293CrossRefGoogle Scholar
  96. 96.
    Drexler KE (1986) Engines of creation: the coming era of nanotechnology. Anchor Press/Doubleday, New YorkGoogle Scholar
  97. 97.
    Bonser R (2005) A design for life. Mater World 13(4):21Google Scholar
  98. 98.
    Hutson L (2005) Go forth and multiply. Mater World 13(4):22–24Google Scholar
  99. 99.
    Pincus P (1996) Bimolecular self-assembling materials. BPA News, DecemberGoogle Scholar
  100. 100.
    Mukhopadhyay SM, Joshi P, Pulikollu RV (2005) Thin films for coating nanomaterials. Tsinghua Sci Technol 10(6):709–717CrossRefGoogle Scholar
  101. 101.
    Bjerklie S (2005) Thinking big with nanotechnology: nano-coatings expected to revolutionize surface finishing. Met Finish 103:46–47CrossRefGoogle Scholar
  102. 102.
    Pulikollu R (2001) Nano-coatings on carbon structures for interfacial modification. Phd dissertation, Wright University, School of Graduate StudiesGoogle Scholar
  103. 103.
    Bullis K (2006) Smart materials could help engineer a new liver. Technology review, June 28 2006Google Scholar
  104. 104.
    Bolte G (2004) Aerosols-An opportunity for nanotechnology-surface treatment; also on a large scale. Rev Adv Mater Sci 6:48–51Google Scholar
  105. 105.
    Bhusan B (2004) Springer handbook of nanotechnology. Springer Verlag, BerlinCrossRefGoogle Scholar
  106. 106.
    (2006) Nanotechnology, Health and the Environment. Information brochure, TA-SWISS http://www.ta-swiss.ch/e/doku_weit_info.html. Accessed 11 May 2009
  107. 107.
    Son SJ, Bai X, Nan A, Ghandehari H, Lee SB (2006) Template synthesis of multifunctional nanotubes for controlled release. J Control Release 114:143–152CrossRefGoogle Scholar
  108. 108.
    Xu T, Xie CS (2003) Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog Org Coat 46:297–301CrossRefGoogle Scholar
  109. 109.
    Lin YS, Wu S-H, Hung Y, Chou Y-H, Chang C, Lin M-L, Tsai C-P, Mou C-Y (2006) Multifunctional composite nanoparticles: magnetic, luminescent and mesoporous. Chem Mater 18(22):5170–5172CrossRefGoogle Scholar
  110. 110.
    Parkansky N, Goldstein O, Alterkop B, Boxman RL, Barkay Z, Rosenberg Y, Frenkel G (2006) Features of micro and nano-particles produced by pulsed arc submerged in ethanol. Powder Technol 161:215–219CrossRefGoogle Scholar
  111. 111.
    Hersam MC, Hoole ACF, O’Shea SJ, Welland ME (1998) Potentiometry and repair of electrically stressed nanowires using atomic force microscopy. Appl Phys Lett 72(8):915–917CrossRefGoogle Scholar
  112. 112.
    Liu W, Naka M (2003) In situ joining of dissimilar nanocrystalline materials by spark plasma sintering. Scripta Mater 48:1225–1230CrossRefGoogle Scholar
  113. 113.
    Kyriakides TR, Cheung CY, Murthy N, Bornstein P, Stayton PS, Hoffman AS (2002) pH Sensitive polymers that enhance intracellular drug delivery in vivo. J Control Release 78(1):295–303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Konstantinos Salonitis
    • 1
  • John Pandremenos
    • 1
  • John Paralikas
    • 1
  • George Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems & Automation, Department of Mechanical Engineering & AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations