Laser welding defects detection in automotive industry based on radiation and spectroscopical measurements

  • Sergio Saludes Rodil
  • Roberto Arnanz Gómez
  • José M. Bernárdez
  • Fernando Rodríguez
  • Luis J. Miguel
  • José R. Perán
Original Article

Abstract

Laser welding is a common technique in the automotive industry. For economic reasons, it is of great importance to detect the defects that can appear. The CO2 penetration laser welding process is characterized by the formation of an electron-free plasma whose radiation can be measured to detect the defects. This paper presents two different approaches to defect detection. The first is based on the correlation between the power spectrum of a photodiode-generated signal and the defects. The second approach is based on the plasma electronic temperature, which is correlated to the presence of defects. Results obtained in an industrial facility under production conditions are presented.

Keywords

Laser welding Defect detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sibillano T, Ancona A, Berardi V, Schingaro E, Basile G, Lugarà PM (2007) Optical detection of conduction/keyhole mode transition in laser welding. J Mater Process Technol 191:364–367CrossRefGoogle Scholar
  2. 2.
    Szymanski Z, Hoffman J, Kurzyna J (2001) Plasma plume oscillations during welding of thin metal sheet with a CW CO 2. J Phys, D, Appl Phys 34:189–197CrossRefGoogle Scholar
  3. 3.
    Klein T, Vicanek M, Simon G (1996) Forced oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 29:322–332CrossRefGoogle Scholar
  4. 4.
    Klein T, Vicanek M, Kroos J, Decker I, Simon, G (1994) Oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 27:2023–2030CrossRefGoogle Scholar
  5. 5.
    Hongping G, Duley, WW (1996) Resonant acoustic emission during laser welding of metals. J Phys D Appl Phys 29:550–555CrossRefGoogle Scholar
  6. 6.
    Otto A, Deinzer G, Geiger M (1994) Prediction of weld data using process control based on surface temperature measurement for high–power energy flow processes. In: SPIE, pp 282–288Google Scholar
  7. 7.
    Xie J (1999) Plasma fluctuation and keyhole instability in laser welding. In: ICALEO, pp 11–20Google Scholar
  8. 8.
    Haran FM, Hand DP, Ebrahim SM, Peters C, Jones JDC (1997) Optical signal oscillations in laser keyhole welding and potential application to lap welding. Meas Sci Technol 8:627–633CrossRefGoogle Scholar
  9. 9.
    Ancona A, Sibillano T, Maggipinto T, Ottonelli F, Lugará PM (2002) Experimental detection and theoretical prediction of laser welding plasma oscillations. In: International Workshop on detecting enviromental, industrial and bio-medical signals, pp 41–59Google Scholar
  10. 10.
    ISO (1997) Welding. electrons ans laser beam welded joints. guidance on quality levels for imperfections. part 1: Steel. (iso 13919-1:1996). Tech Rep, International Organization for StandardizationGoogle Scholar
  11. 11.
    Zhang EY (2008) Real–time weld process monitoring. Woodhead Publishing in Materials, CRC, CambridgeCrossRefGoogle Scholar
  12. 12.
    Farson DF, Hillsley DK (1996) Frequency-time characteristic of air–borne signals from laser weldings. J Laser Appl 1:33–42Google Scholar
  13. 13.
    Norman P, Engström H, Kaplan FH (2008) Theoretical analysis of photodiode monitoring of laser welding defects imaging combined with modelling. J Phys D Appl Phys 14(19)195502–195511CrossRefGoogle Scholar
  14. 14.
    Chen HB, Li L, Brookfield DJ, Williams K, Steen WM (1991) Laser process monitoring with dual wavelength optical sensors. In: ICALEO, pp 113–122Google Scholar
  15. 15.
    Gatzweiler W, Maischner D, Beyer E (1998) On–line diagnostics of process–control in welding with CO 2 laser. In: Hight power CO 2 laser system and applications, pp 142–148Google Scholar
  16. 16.
    Miyamoto I, Kamimuki K, Maruo H, Mori K, Sakamoto M (1993) In process monitoring in laser welding of automotive parts. In: ICALEO, pp 412–423Google Scholar
  17. 17.
    Marson DF, Ali A, Sang Y (1998) Relationship of optical and acoustic emission to laser weld penetration. Weld J 4:142–148Google Scholar
  18. 18.
    Park H, Rhee S (1999) Estimation of weld bead size in co 2 laser welding by using multiple regression and neural network. J Laser Appl 3(11):143–150Google Scholar
  19. 19.
    Park H, Rhee S (1999) Analysis of mechanism of plasma and spatter in CO 2 laser welding of galvanized steel. Opics Laser Technology 31(2):119–126CrossRefGoogle Scholar
  20. 20.
    Poueyo-Verwaerde A, Fabbro R, Deshors G, Frutos AM, Orza JM (1993) “Experimental study of laser-induced plasma in welding conditions with continuous co2 laser. J Appl Phys 74(9):5773–5780CrossRefGoogle Scholar
  21. 21.
    Lacroix D, Jeandel G, Boudot C (1997) Spectroscopic characterization of laser–inducec plasma created during welding with a pulsed nd:yag laser J Appl Phys 81(10)6599–6606Google Scholar
  22. 22.
    Ancona A, Spagnolo V, Lugarà PM, Ferrara M (2001) Optical sensor for real–time monitoring of co2 laser welding process. Appl Opt 40(33):6019–6025CrossRefGoogle Scholar
  23. 23.
    Sibillano T, Ancona A, Berardi V, Lugara PM (2005) Correlation analysis in laser welding plasma. Opt Commun 251:139–148CrossRefGoogle Scholar
  24. 24.
    Sibillano T, Ancona A, Berardi V, Lugarà PM (2009) A real–time spectroscopic sensor for monitoring laser welding processes. Sensors 9:3376–3385CrossRefGoogle Scholar
  25. 25.
    Alipi C, D’Angelo G, Matteucci M, Pasquettaz G, Piuri V, Scotti F (2003) Composite techniques for quality analysis in automotive laser welding. In: International symposium on computational intelligence for meassurement systems and applications. Lugano, SuizaGoogle Scholar
  26. 26.
    Basseville M, Nikiforov I (1993) Detection of abrupt changes: theory and application. Information and system science series. Prentice Hall, Englewood CliffsGoogle Scholar
  27. 27.
    Gustafsson F (2000) Adaptive filtering and change detection. Wiley, New YorkCrossRefGoogle Scholar
  28. 28.
    Rodríguez F, Saludes S, Miguel LJ, Aparicio JA, Mar S, Perán JR (2003) Fault detection in laser welding. In: Proc. of the SAFEPROCESS symposium, WashingtonGoogle Scholar
  29. 29.
    Haykin S (1999) Neural networks. A comprehensive foundation, 2nd edn. Prentice Hall, Englewood CliffsMATHGoogle Scholar
  30. 30.
    Griem HR (1997) Principles of plasma spectroscopy. Cambridge Monographs on Plasma Physics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. 31.
    Mirapeix J, Cobo A, Jaúregui C, López-Aguilera JM (2006) Fast algorithm for spectral processing with application to on–line welding quality assurance. Meas Sci Technol 17:2623–2629CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Sergio Saludes Rodil
    • 1
  • Roberto Arnanz Gómez
    • 1
  • José M. Bernárdez
    • 1
    • 3
  • Fernando Rodríguez
    • 1
    • 4
  • Luis J. Miguel
    • 2
  • José R. Perán
    • 2
  1. 1.Fundación CARTIFBoecillo (Valladolid)Spain
  2. 2.Escuela Técnica Superior de Ingenieros IndustrialesUniversity of ValladolidValladolidSpain
  3. 3.Isend S.A. Parque Tecnológico de BoecilloValladolidSpain
  4. 4.Indal S.L. Crta. Arcas Reales s/nValladolidSpain

Personalised recommendations