On the stability of high-speed milling with spindle speed variation

  • Sébastien SeguyEmail author
  • Tamás Insperger
  • Lionel Arnaud
  • Gilles Dessein
  • Grégoire Peigné


Spindle speed variation is a well-known technique to suppress regenerative machine tool vibrations, but it is usually considered to be effective only for low spindle speeds. In this paper, the effect of spindle speed variation is analyzed in the high-speed domain for spindle speeds corresponding to the first flip (period doubling) and to the first Hopf lobes. The optimal amplitudes and frequencies of the speed modulations are computed using the semidiscretization method. It is shown that period doubling chatter can effectively be suppressed by spindle speed variation, although, the technique is not effective for the quasiperiodic chatter above the Hopf lobe. The results are verified by cutting tests. Some special cases are also discussed where the practical behavior of the system differs from the predicted one in some ways. For these cases, it is pointed out that the concept of stability is understood on the scale of the principal period of the system—that is, the speed modulation period for variable spindle speed machining and the tooth passing period for constant spindle speed machining.


Stability Milling Spindle speed variation Regenerative chatter Surface roughness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tobias SA, Fishwick W (1958) Theory of regenerative machine tool chatter. Engineer 205:199–203, 238–239Google Scholar
  2. 2.
    Tlusty J (1986) Dynamics of high-speed milling. Trans ASME J Eng Ind 108:59–67CrossRefGoogle Scholar
  3. 3.
    Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Ann CIRP 44:357–362CrossRefGoogle Scholar
  4. 4.
    Smith S, Tlusty J (1993) Efficient simulation programs for chatter in milling. Ann CIRP 42:463–466CrossRefGoogle Scholar
  5. 5.
    Davies MA, Pratt JR, Dutterer B, Burns TJ (2002) Stability prediction for low radial immersion milling. Trans ASME J Manuf Sci Eng 124:217–225CrossRefGoogle Scholar
  6. 6.
    Insperger T, Mann BP, Stépán G, Bayly PV (2003) Stability of up-milling and down-milling, Part 1: alternative analytical methods. Int J Mach Tools Manuf 43:25–34CrossRefGoogle Scholar
  7. 7.
    Campomanes ML, Altintas Y (2003) An improved time domain simulation for dynamic milling at small radial immersions. Trans ASME J Manuf Sci Eng 125:416–422CrossRefGoogle Scholar
  8. 8.
    Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. Trans ASME J Manuf Sci Eng 125:220–225CrossRefGoogle Scholar
  9. 9.
    Merdol SD, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. Trans ASME J Manuf Sci Eng 126:459–466CrossRefGoogle Scholar
  10. 10.
    Paris H, Peigné G, Mayer R (2004) Surface shape prediction in high speed milling. Int J Mach Tools Manuf 44:1567–1576CrossRefGoogle Scholar
  11. 11.
    Solis E, Peres CR, Jiménez JE, Alique JR, Monje JC (2004) A new analytical–experimental method for the identification of stability lobes in high-speed milling. Int J Mach Tools Manuf 44:1591–1597CrossRefGoogle Scholar
  12. 12.
    Surmann T, Enk D (2007) Simulation of milling tool vibration trajectories along changing engagement conditions. Int J Mach Tools Manuf 47:1442–1448CrossRefGoogle Scholar
  13. 13.
    Seguy S, Campa FJ, López de Lacalle LN, Arnaud L, Dessein G, Aramendi G (2008) Toolpath dependent stability lobes for the milling of thin-walled parts. Int J Mach Machinabil Mater 4:377–392CrossRefGoogle Scholar
  14. 14.
    Seguy S, Dessein G, Arnaud L (2008) Surface roughness variation of thin wall milling, related to modal interactions. Int J Mach Tools Manuf 48:261–274CrossRefGoogle Scholar
  15. 15.
    Tlusty J, Smith S, Winfough WR (1996) Techniques for the use of long slender end mills in high-speed milling. Ann CIRP 4:393–396CrossRefGoogle Scholar
  16. 16.
    Duncan GS, Tummond MF, Schmitz TL (2005) An investigation of the dynamic absorber effect in high-speed machining. Int J Mach Tools Manuf 45:497–507CrossRefGoogle Scholar
  17. 17.
    Altintas Y, Engin S, Budak E (1999) Analytical stability prediction and design of variable pitch cutters. Trans ASME J Manuf Sci Eng 121:173–178CrossRefGoogle Scholar
  18. 18.
    Budak E (2003) An analytical design method for milling cutters with nonconstant pitch to increase stability, Part I: theory. Trans ASME J Manuf Sci Eng 125:29–34CrossRefGoogle Scholar
  19. 19.
    Stone BJ (1970) The effect on the chatter behaviour of machine tools of cutters with different helix angles on adjacent teeth. In: Proceedings of the 11th MTDR Conference, Macmillan pp 169–180Google Scholar
  20. 20.
    Sims ND, Mann BP, Huyanan S (2008) Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J Sound Vib 317:664–686CrossRefGoogle Scholar
  21. 21.
    Takemura T, Kitamura T, Hoshi T, Okushima K (1974) Active suppression of chatter by programmed variation of spindle speed. Ann CIRP 23:121–122Google Scholar
  22. 22.
    Sexton JS, Milne RD, Stone BJ (1977) A stability analysis of single point machining with varying spindle speed. Appl Math Model 1:310–318CrossRefMathSciNetGoogle Scholar
  23. 23.
    Sexton JS, Stone BJ (1978) The stability of machining with continuously varying spindle speed. Ann CIRP 27:321–326Google Scholar
  24. 24.
    Sexton JS, Stone BJ (1980) An investigation of the transient effects during variable speed cutting. J Mech Eng Sci 22:107–118CrossRefGoogle Scholar
  25. 25.
    Tsao TC, McCarthy MW, Kapoor SG (1993) A new approach to stability analysis of variable speed machining systems. Int J Mach Tools Manuf 33:791–808CrossRefGoogle Scholar
  26. 26.
    Jayaram S, Kapoor SG, DeVor RE (2000) Analytical stability analysis of variable spindle speed machining. Trans ASME J Manuf Sci Eng 122:391–397CrossRefGoogle Scholar
  27. 27.
    Insperger T, Stépán G (2004) Stability analysis of turning with periodic spindle speed modulation via semidiscretization. J Vib Control 10:1835–1855zbMATHCrossRefGoogle Scholar
  28. 28.
    Zhang H, Jackson MJ, Ni J (2009) Stability analysis on spindle speed variation method for machining chatter suppression. Int J Mach Machinabil Mater 5:107–128CrossRefGoogle Scholar
  29. 29.
    Al-Regib E, Ni J, Lee SH (2003) Programming spindle speed variation for machine tool chatter suppression. Int J Mach Tools Manuf 43:1229–1240CrossRefGoogle Scholar
  30. 30.
    Yang F, Zhang B, Yu J (2003) Chatter suppression with multiple time-varying parameters in turning. J Mater Process Technol 141:431–438CrossRefGoogle Scholar
  31. 31.
    Sastry S, Kapoor SG, DeVor RE (2002) Floquet theory based approach for stability analysis of the variable speed face-milling process. Trans ASME J Manuf Sci Eng 124:10–17CrossRefGoogle Scholar
  32. 32.
    Zatarain M, Bediaga I, Muñoa J, Lizarralde R (2008) Stability of milling processes with continuous spindle speed variation: analysis in the frequency and time domains, and experimental correlation. Ann CIRP 57:379–384CrossRefGoogle Scholar
  33. 33.
    Altintas Y, Chan PK (1992) In-process detection and suppression of chatter in milling. Int J Mach Tools Manuf 32:329–347CrossRefGoogle Scholar
  34. 34.
    Bediaga I, Egaña I, Muñoa J (2006) Reducción de la inestabilidad en cortes interrumpidos en fresado a alta velocidad mediante variación de la velocidad del husillo. In: XVI Congreso de Máquinas-Herramienta y Tecnologías de Fabricación, San Sebastián, SpainGoogle Scholar
  35. 35.
    Radulescu R, Kapoor SG, DeVor RE (1997) An investigation of variable spindle speed face milling for tool-work structures with complex dynamics, Part 2: physical explanation. Trans ASME J Manuf Sci Eng 119:273–280CrossRefGoogle Scholar
  36. 36.
    Insperger T, Stépán G (2002) Semi-discretization method for delayed systems. Int J Numer Meth Eng 55:503–518zbMATHCrossRefGoogle Scholar
  37. 37.
    Lin SC, DeVor RE, Kapoor SG (1990) The effects of variable speed cutting on vibration control in face milling. Trans ASME J Eng Ind 112:1–11CrossRefGoogle Scholar
  38. 38.
    Long XH, Balachandran B, Mann BP (2007) Dynamics of milling processes with variable time delays. Nonlinear Dynam 47:49–63zbMATHCrossRefGoogle Scholar
  39. 39.
    Faassen RPH, van de Wouw N, Nijmeijer H, Oosterling JAJ (2007) An improved tool path model including periodic delay for chatter prediction in milling. J Comput Nonlinear Dynam 2:167–179CrossRefGoogle Scholar
  40. 40.
    Insperger T, Stépán G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313:334–341CrossRefGoogle Scholar
  41. 41.
    Mann BP, Insperger T, Stépán G, Bayly PV (2003) Stability of up-milling and down-milling, part 2: experimental verification. Int J Mach Tools Manuf 43:35–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Sébastien Seguy
    • 1
    Email author
  • Tamás Insperger
    • 2
  • Lionel Arnaud
    • 3
  • Gilles Dessein
    • 3
  • Grégoire Peigné
    • 4
  1. 1.INSA, UPS, Mines Albi, ISAE; ICA (Institut Clément Ader)Université de ToulouseToulouseFrance
  2. 2.Department of Applied MechanicsBudapest University of Technology and EconomicsBudapestHungary
  3. 3.ENIT (École Nationale d’Ingénieurs de Tarbes), LGP (Laboratoire Génie de Production)Université de ToulouseTarbes CedexFrance
  4. 4.Société Mitis, École Centrale de NantesNantes CedexFrance

Personalised recommendations